How to find min and max of 100 numbers ?

Click For Summary
To find the minimum and maximum of 100 numbers, the minimum number of comparisons required is approximately 148 to 162, depending on the method used. The recurrence relation T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + 2 is utilized to analyze the comparisons needed. A binary tree approach is suggested for organizing the comparisons, leading to a total of 162 comparisons when merging results. An iterative method can achieve the task with about 148 comparisons, highlighting the efficiency of different strategies. Understanding the comparison mechanics is crucial for optimizing the process.
22990atinesh
Messages
143
Reaction score
1

Homework Statement


The minimum number of comparisons required to find the minimum and the maximum of 100
numbers is ...

Homework Equations


##T(n)=T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + 2##

The Attempt at a Solution


Recurrence for the above problem is
##T(n)=T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + 2 \approx 1.5 \times n - 2##

hence ##T(100)=1.5 \times 100 - 2 = 148##
But by solving like this I'm coming up with the ans 162

We can divide list of 100 numbers in two list (50,50). Now upon combining the result of these two list 2 more comparisons will be required. Now recursively we break the lists like below, which will make a binary tree

##100 \implies (50,50)##
##50 \implies (25,25)##
##25 \implies (12,13)##
##12 \implies (6,6), 13 \implies (6,7)##
##6 \implies (3,3), 7 \implies(3,4)##
##3 \implies (2,1), 4 \implies (2,2)##

By combining the results upwards in the tree with 2 comparisons on merging each two lists I'm coming up with ans 162 what am I overcounting.
 
Physics news on Phys.org
Splitting up the lists as you've shown, I also get 162. You can either split up the lists into powers of two, or use an iterative approach for 148 compares. In this case, it should be easy to see why the number of compares is ⌈(3n/2)⌉ - 2: the first pair takes 1 compare, all of the remaining pairs take 3 compares, and if there are a odd number of elements, the last one takes 2 compares.

Code:
static size_t cmp;              // number of compares

MINMAX findminmax(int a[], size_t sizea)
{
MINMAX minmax;
size_t i;
int min;
int max;

    if(sizea == 0){             // if empty array
        minmax.min = 0;         //   set min = max = 0
        minmax.max = 0;
        return minmax;
    }
    if(sizea == 1){             // if size == 1
        minmax.min = a[0];      //   set min = max = a[0]
        minmax.max = a[0];
        return minmax;
    }
    if(a[0] <= a[1]){           // set initial min and max
        minmax.min = a[0];
        minmax.max = a[1];
    } else {
        minmax.min = a[1];
        minmax.max = a[0];
    }
    cmp += 1;
    for(i = 2; i < (sizea-1); i += 2){ // find min and max
        if(a[i] <= a[i+1]){
            if(a[i  ] < minmax.min)
                minmax.min = a[i  ];
            if(a[i+1] > minmax.max)
                minmax.max = a[i+1];
        } else {
            if(a[i  ] > minmax.max)
                minmax.max = a[i  ];
            if(a[i+1] < minmax.min)
                minmax.min = a[i+1];
        }
        cmp += 3;
    }
    if(i < sizea){
        if(a[i] < minmax.min)
            minmax.min = a[i];
        if(a[i] > minmax.max)
            minmax.max = a[i];
        cmp += 2;
    }
    return minmax;
}
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K