- #1

vande060

- 186

- 0

## Homework Statement

F1 = (a x)/(x^2 + y^2)^2 i + (a y)/(x^2 + y^2)^2 j

determine the potential function (if there is one) and the work done in moving from (0, 1) to (1, 0) along the curve

x2 + y2 = 1 (let a = 5.0).

## Homework Equations

F1 = (a x)/(x^2 + y^2)^2 i + (a y)/(x^2 + y^2)^2 j

x2 + y2 = 1 (let a = 5.0)

## The Attempt at a Solution

All right, so from lecture i gathered that for this potential function to be determined this force must be conservative and must pass the component test. Already at this point i begin to get confused, so does this mean that i just have to make sure that each components derivative is the same? DO i differentiate the i component with respect to x and the j component with respect to y like this:

x' = 5(y^2 - 3x^2)/(x^2 + y^2)^3

y' = 5(x^2 - 3y^2)/(y^2 + x^2)^3

am i right this far, I am am so unsure about this any help would be appreciated

Last edited: