# How to find the unknown mass of an object in a 2d collision?

## Homework Statement

I have two pucks colliding. PUck 1 has a mass of .545 kg. Puck two has the same puck mass, but also has a weight added onto it. I need to find the mass of puck two.

Velocity before and after for puck 1:
V1i = 2.0m/s[19°Below the Horizontal]
V1f = 3.0m/s[31°Above the Horizontal]

Velocity before and after for puck 2:
V2i = 4.33m/s[19°Above the Horizontal]
V2f = 3.36m/s[16°Below the Horizontal]

## Homework Equations

Conservation of momentum:

$\vec{Pi}$ = $\vec{Pf}$

## The Attempt at a Solution

m1$\vec{vi}$ + m2$\vec{vi}$ = m1$\vec{vf}$ + m2$\vec{vf}$

m1$\vec{vf}$ - m1$\vec{vi}$ = m2$\vec{vf}$ - m2$\vec{vi}$

m2/m1 = (v1f - v1i)/(v2f-v1i)

Now, I am supposed to draw vector diagrams for this but after that I get stuck. What do I do once I have drawn the vector diagrams for (v1f - v1i) and (v2f-v2i) ? I dont need someone to give me a full solution or anything, I just need some help to continue on the right track. I really appreciate any help!

Here is what I am getting by the vector diagrams by the way:
(v1f - v1i) = 2.3m/s [83° Above the horizontal]
(v1f - v1i) = -2.5m/s [78° Belowthe horizontal]

Last edited:

## Answers and Replies

gneill
Mentor
Hmm. One would expect momentum to be conserved in the collision. In fact, momentum in the x-direction and momentum in the y-direction should be conserved independently. Since you have the vectors for both objects before and after collision, you can write the momentum equations for both components.

When I do so and solve for the mass of the second puck I get different results for that mass from the x and y component equations. Furthermore, both results are LESS than the mass of the puck 1.

I would expect some variation due to experimental error, but the results seem to be a bit wonky even so. Can you check your data to make sure that you transcribed it correctly?