How to Find x Given sin^{-1}(x) + cos^{-1}(1/√x) = 0?

  • Context: MHB 
  • Thread starter Thread starter Amer
  • Start date Start date
Click For Summary
SUMMARY

The equation sin-1(x) + cos-1(1/√x) = 0 can be solved by applying trigonometric identities and transformations. By taking the sine of both sides, the equation simplifies to x(1/√x) + √(1 - (1/√x)2)√(1 - x2) = 0. This leads to the formulation of an irrational equation that requires further algebraic manipulation to find the value of x.

PREREQUISITES
  • Understanding of inverse trigonometric functions (sin-1 and cos-1)
  • Knowledge of trigonometric identities and transformations
  • Ability to manipulate irrational equations
  • Familiarity with algebraic expressions and square roots
NEXT STEPS
  • Study the properties of inverse trigonometric functions
  • Learn how to solve irrational equations systematically
  • Explore trigonometric identities and their applications in solving equations
  • Practice algebraic manipulation techniques for complex expressions
USEFUL FOR

Mathematics students, educators, and anyone interested in solving trigonometric equations or enhancing their algebraic skills.

Amer
Messages
259
Reaction score
0
Find x such that

sin^{-1} (x) + cos^{-1}\left( \frac{1}{\sqrt{x}}\right) = 0
 
Last edited:
Physics news on Phys.org
Amer said:
Find x such that

sin^{-1} (x) + cos^{-1}\left( \frac{1}{\sqrt{x}}\right) = 0

First let's take the $\sin$ of both sides:
$$\sin\left[\mbox{arc}\sin(x)+\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]=\sin(0)$$
$$\Leftrightarrow \sin\left[\mbox{arc}\sin(x)\right]\cos\left[\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]+\sin\left[\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]\cos\left[\mbox{arc}\sin(x)\right]=0$$
$$\Leftrightarrow x\left(\frac{1}{\sqrt{x}}\right)+\sqrt{1-\left(\frac{1}{\sqrt{x}}\right)^2}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \sqrt{x}+\sqrt{1-\frac{1}{x}}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \sqrt{x}+\sqrt{\frac{x-1}{x}}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \ldots$$

Now you have to solve an irrational equation.
 
Last edited:
Thanks
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
859
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K