MHB How to Find x Given sin^{-1}(x) + cos^{-1}(1/√x) = 0?

  • Thread starter Thread starter Amer
  • Start date Start date
Click For Summary
To solve the equation sin^{-1}(x) + cos^{-1}(1/√x) = 0, the sine of both sides is taken, leading to a complex equation involving both x and square roots. The transformation simplifies to x(1/√x) + √(1 - (1/√x)²)√(1 - x²) = 0. Further simplification yields the equation √x + √((x - 1)/x)√(1 - x²) = 0, which is an irrational equation. The discussion focuses on the steps needed to isolate x and solve for its value. This approach highlights the intricacies of working with inverse trigonometric functions and their relationships.
Amer
Messages
259
Reaction score
0
Find x such that

sin^{-1} (x) + cos^{-1}\left( \frac{1}{\sqrt{x}}\right) = 0
 
Last edited:
Physics news on Phys.org
Amer said:
Find x such that

sin^{-1} (x) + cos^{-1}\left( \frac{1}{\sqrt{x}}\right) = 0

First let's take the $\sin$ of both sides:
$$\sin\left[\mbox{arc}\sin(x)+\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]=\sin(0)$$
$$\Leftrightarrow \sin\left[\mbox{arc}\sin(x)\right]\cos\left[\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]+\sin\left[\mbox{arc}\cos\left(\frac{1}{ \sqrt{x}}\right)\right]\cos\left[\mbox{arc}\sin(x)\right]=0$$
$$\Leftrightarrow x\left(\frac{1}{\sqrt{x}}\right)+\sqrt{1-\left(\frac{1}{\sqrt{x}}\right)^2}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \sqrt{x}+\sqrt{1-\frac{1}{x}}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \sqrt{x}+\sqrt{\frac{x-1}{x}}\sqrt{1-x^2}=0$$
$$\Leftrightarrow \ldots$$

Now you have to solve an irrational equation.
 
Last edited:
Thanks
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
606
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K