- #1
TheSodesa
- 224
- 7
Homework Statement
Determine the Fourier-transfroms of the functions
\begin{equation*}
a) f : f(t) = H(t+3) - H(t-3) \text{ and } g : g(t) = \cos(5t) f(t)
\end{equation*}
and
\begin{equation*}
b) f : f(t) = e^{-2|t|} \text{ and } g : g(t) = \cos(3t) f(t)
\end{equation*}
Homework Equations
The Fourier transformation definition:
\begin{equation}
\digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du
\end{equation}
What to do with cosines:
\begin{equation}
\digamma\{f(t)\cos(\alpha t)\}(\omega) = \frac{1}{2} F(\omega - \alpha) + \frac{1}{2}F(\omega + \alpha)
\end{equation}
The Attempt at a Solution
I managed part a) somewhat:
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} \left( H(t+3) - H(t-3) \right) e^{-j\omega u} \,du \\
%
&= \int_{-3}^{3} e^{-j\omega u} \,du = \left[ \frac{e^{-j\omega u}}{-j\omega}\right]_{-3}^{3}
= \left( \frac{e^{-j3\omega }}{-j\omega} - \frac{e^{j3\omega}}{-j\omega} \right)\\
%
&= \left( \frac{ e^{j3\omega}}{j\omega} - \frac{e^{-j3\omega }}{j\omega} \right) = \frac{1}{2j\omega}(e^{j3\omega } - e^{-j3\omega })\\
%
&= \frac{\sin(3\omega)}{\omega} = 3 sinc(3\omega)
\end{align*}
Sinc is continuous at ##\omega = 0##, so we don't need to handle that case separately.
Then, using equation (2) I wrote
\begin{align*}
\digamma\{ f(t) \cos(5t) \}(\omega) &= \frac{3}{2} sinc(3(\omega-5)) + \frac{3}{2} sinc(3(\omega+5))
\end{align*}
Part b) has me completely stumped. Since
\begin{equation}
|u|=
\begin{cases}
u &, u\geq 0\\
-u &, u < 0,
\end{cases}
\end{equation}
we write, according to equation (1):
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} e^{} \,du\\
%
&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
%
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\
%
&= \lim_{a \to \infty} \sij{-a}{0} \frac{e^{(2-j\omega) u}}{(2-j\omega)} + \sij{0}{a} \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\\
%
&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\
%
&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right) \\
%
&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)}\\
%
&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\
&- \frac{(2-j\omega)e^{-a(2-j\omega) }}{(2+j\omega)(2-j\omega)} - \frac{(2+j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}\\
\end{align*}
This isn't looking good. Is there a trick that I'm missing? Help would be appreciated.
Last edited: