How to Fourier-transform e^(-2|t|)?

In summary, to Fourier-transform e^(-2|t|), you would first take the absolute value of t and multiply it by -2. Then, you would take the exponential of that result. After that, you would perform the Fourier transformation by integrating the function multiplied by the complex exponential e^(-iwt) from negative infinity to positive infinity. The resulting Fourier-transformed function would have a peak at the frequency w=2 and would decrease exponentially as the frequency increases.
  • #1
TheSodesa
224
7

Homework Statement


Determine the Fourier-transfroms of the functions

\begin{equation*}
a) f : f(t) = H(t+3) - H(t-3) \text{ and } g : g(t) = \cos(5t) f(t)
\end{equation*}
and
\begin{equation*}
b) f : f(t) = e^{-2|t|} \text{ and } g : g(t) = \cos(3t) f(t)
\end{equation*}

Homework Equations


The Fourier transformation definition:
\begin{equation}
\digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du
\end{equation}
What to do with cosines:
\begin{equation}

\digamma\{f(t)\cos(\alpha t)\}(\omega) = \frac{1}{2} F(\omega - \alpha) + \frac{1}{2}F(\omega + \alpha)

\end{equation}

The Attempt at a Solution


I managed part a) somewhat:
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} \left( H(t+3) - H(t-3) \right) e^{-j\omega u} \,du \\
%
&= \int_{-3}^{3} e^{-j\omega u} \,du = \left[ \frac{e^{-j\omega u}}{-j\omega}\right]_{-3}^{3}
= \left( \frac{e^{-j3\omega }}{-j\omega} - \frac{e^{j3\omega}}{-j\omega} \right)\\
%
&= \left( \frac{ e^{j3\omega}}{j\omega} - \frac{e^{-j3\omega }}{j\omega} \right) = \frac{1}{2j\omega}(e^{j3\omega } - e^{-j3\omega })\\
%
&= \frac{\sin(3\omega)}{\omega} = 3 sinc(3\omega)
\end{align*}
Sinc is continuous at ##\omega = 0##, so we don't need to handle that case separately.
Then, using equation (2) I wrote
\begin{align*}
\digamma\{ f(t) \cos(5t) \}(\omega) &= \frac{3}{2} sinc(3(\omega-5)) + \frac{3}{2} sinc(3(\omega+5))
\end{align*}

Part b) has me completely stumped. Since
\begin{equation}
|u|=
\begin{cases}
u &, u\geq 0\\
-u &, u < 0,
\end{cases}
\end{equation}
we write, according to equation (1):
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} e^{} \,du\\
%
&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
%
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\

%

&= \lim_{a \to \infty} \sij{-a}{0} \frac{e^{(2-j\omega) u}}{(2-j\omega)} + \sij{0}{a} \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\\

%

&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)

+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\

%

&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)

+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right) \\

%

&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)}\\

%

&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\

&- \frac{(2-j\omega)e^{-a(2-j\omega) }}{(2+j\omega)(2-j\omega)} - \frac{(2+j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}\\
\end{align*}

This isn't looking good. Is there a trick that I'm missing? Help would be appreciated.
 
Last edited:
Physics news on Phys.org
  • #2
TheSodesa said:

Homework Statement


Determine the Fourier-transfroms of the functions

\begin{equation*}
a) f : f(t) = H(t+3) - H(t-3) \text{ and } g : g(t) = \cos(5t) f(t)
\end{equation*}
and
\begin{equation*}
b) f : f(t) = e^{-2|t|} \text{ and } g : g(t) = \cos(3t) f(t)
\end{equation*}

Homework Equations


The Fourier transformation definition:
\begin{equation}
\digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du
\end{equation}

The Attempt at a Solution



Part b) has me completely stumped.

If you write ##\cos(3t)## in terms of ##e^{\pm 3 j t}## you have
$$\int_{-\infty}^0 e^{-j w t} e^{\pm 3 j t} e^{2t} \, dt = \frac{1}{2 - j w \pm 3 j} \left. e^{-j w t} e^{\pm 3 j t} e^{2t}\right|_{-\infty}^0,$$
which is convergent because of the exponential damping factor ##e^{2t}## when ##t \to -\infty##. Similarly for the other part.
 
  • #3
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the u from the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
 
  • Like
Likes TheSodesa
  • #4
haruspex said:
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the unfrom the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
Yhea, I just noticed. Fixing.
 
  • #5
haruspex said:
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the u from the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
Ok, so right now I have
\begin{align*}
\digamma\{f(t)\}(\omega) = \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
Not compeltely sure what to do here. I'm trying to edit my offline LaTeX document at the same time, so mistakes are bound to be made.
 
  • #6
TheSodesa said:
Ok, so right now I have
\begin{align*}
\digamma\{f(t)\}(\omega) = \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
Not compeltely sure what to do here. I'm trying to edit my offline LaTeX document at the same time, so mistakes are bound to be made.
You still have 2-jω in both exponents.
 
  • Like
Likes TheSodesa
  • #7
haruspex said:
You still have 2-jω in both exponents.
\begin{align*}
\digamma\{f(t)\}(\omega) &= \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2+j\omega)}}{(2+j\omega)(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) } + (2-j\omega)e^{-a(2+j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
There. I think it might have been a bad idea to try and learn LaTeX proper by doing all of my coursework with it. Copy-paste can be treacherous.
 
  • #8
haruspex said:
You still have 2-jω in both exponents.
It looks like I have a sum of complex conjugates in the numerator.
 
  • #9
Ray Vickson said:
If you write ##\cos(3t)## in terms of ##e^{\pm 3 j t}## you have
$$\int_{-\infty}^0 e^{-j w t} e^{\pm 3 j t} e^{2t} \, dt = \frac{1}{2 - j w \pm 3 j} \left. e^{-j w t} e^{\pm 3 j t} e^{2t}\right|_{-\infty}^0,$$
which is convergent because of the exponential damping factor ##e^{2t}## when ##t \to -\infty##. Similarly for the other part.
It's not the cosine, that scares me. What I'm ahving trouble with is ##f(t)##. I also made a few mistakes in the opening post because I'm copyin stuff from my offline LaTeX-document. They should be fixed now.
 
  • #10
TheSodesa said:
It looks like I have a sum of complex conjugates in the numerator.
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.
 
  • #11
haruspex said:
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.

Alright, let me go over it once more. This might take a moment.
 
  • #12
haruspex said:
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.

I got it. Just a sec, and I'll clean up my derivation.
 
  • #13
TheSodesa said:
It's not the cosine, that scares me. What I'm ahving trouble with is ##f(t)##. I also made a few mistakes in the opening post because I'm copyin stuff from my offline LaTeX-document. They should be fixed now.

Your ##f(t) = e^{-2|t|}## is no problem; that is why you used ##e^{2t}## for ##t < 0## and ##e^{-2t}## for ##t >0##. You get two convergent integrals. It is even faster and easier to use standard expressions for ##\int e^{at} \cos(bt) \, dt##, then use ##b = 3## and
$$ a = \begin{cases} -j\omega + 2, & t < 0\\
-j \omega - 2,& t > 0
\end{cases}
$$
 
Last edited:
  • Like
Likes TheSodesa
  • #14
Alright, here's the complete derivation this time (hopefully) without errors:

\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du\\
&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\
&= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\
&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\
&- \frac{(2-j\omega) \overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }^{\text{... specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\
&= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
\end{align*}

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}
 
Last edited:
  • #15
TheSodesa said:
Alright, here's the complete derivation this time (hopefully) without errors:

\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du\\

&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\
&= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\
&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\
&- \frac{(2-j\omega)\overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }}^{\text{...specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\
&= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
\end{align*}

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}

Answer is correct; derivation did not render properly.
 
  • #16
There seems to be a math processing error preventing the rendering of the biggest part of this exercise. Looking at the source code, I can't spot the error on my part.

Regradless, if it doesn't decide to resolve itself, the correct answer was
\begin{equation}
\digamma\{ f(t) \} = \frac{4}{4 + \omega^2}
\end{equation}

Thanks for the help, everyone.
 
Last edited:
  • #17
Ray Vickson said:
Answer is correct; derivation did not render properly.
Yeah, I'm wondering why that is. I tried to switch any dollar signs to double pound signs and such, but its still not rendering.
 
  • #18
Doesn't seem to like the text imbeds
TheSodesa said:
Alright, here's the complete derivation this time (hopefully) without errors:
##
\digamma\{ f(t) \}(\omega) = ## ##\int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = ## ##\int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du## ##
= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\## ##
= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\## ##
= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\## ##
= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\## ##
= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\## ##
= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\## ##
= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}
- \frac{(2-j\omega) \overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }^{\text{... specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\## ##
= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
##

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}
 

1. What is the Fourier transform of e^(-2|t|)?

The Fourier transform of e^(-2|t|) is a complex-valued function defined as F(ω) = 2/(4+ω^2), where ω is the frequency variable.

2. How do you perform the Fourier transform of e^(-2|t|)?

The Fourier transform of e^(-2|t|) can be calculated using the integral formula F(ω) = ∫e^(-2|t|)e^(-iωt)dt, where the integration is done over all real values of t.

3. What is the physical interpretation of the Fourier transform of e^(-2|t|)?

The Fourier transform of e^(-2|t|) represents the frequency spectrum of a decaying exponential signal. It shows the amplitude and phase of all the sinusoidal components that make up the original signal.

4. How does the Fourier transform of e^(-2|t|) differ from other Fourier transforms?

The Fourier transform of e^(-2|t|) is unique in that it has a closed-form expression, unlike many other Fourier transforms that require numerical integration. It also has a simple relationship with its inverse transform, making it easier to calculate in both directions.

5. What applications does the Fourier transform of e^(-2|t|) have in science and engineering?

The Fourier transform of e^(-2|t|) is used in many areas of science and engineering, including signal processing, image processing, and quantum mechanics. It is also used in the study of wave propagation and resonance phenomena.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
794
  • Calculus and Beyond Homework Help
Replies
1
Views
784
  • Calculus and Beyond Homework Help
Replies
6
Views
233
  • Calculus and Beyond Homework Help
Replies
3
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
760
  • Calculus and Beyond Homework Help
Replies
1
Views
640
  • Calculus and Beyond Homework Help
Replies
6
Views
996
  • Calculus and Beyond Homework Help
Replies
1
Views
534
Back
Top