Absolutely not!
Consider a section of a road that is 1 mile long that goes up a hill. A driver in a car goes up the hill at an average speed of 30 miles per hour. How fast must the driver go back down the hill to have an average speed for both sections of 60 miles per hour?
The intuitive, but wrong, answer is that if the driver goes down the hill, the average speed for both sections will be 60 mph. If you work it out using the formula ##d = r \cdot t##, and solving for time t, you'll find that 90 mph isn't fast enough.As already mentioned, you need to use parentheses!
Your first formula (which is incorrect) means ##V_{ave} = V_1 + \frac {V_2} 2##, which, besides being wrong, isn't what you intended.
Your second formula means ##V_{ave} = X_2 - \frac {X_1}{t_2} - t_1##, which I'm sure isn't what you mean.