- #1
iScience
- 466
- 5
i'm trying to integrate this:
$$W=\frac{ε}{2}\int{\vec{∇}\cdot\vec{E})Vdτ}$$
where ε is a constant, E= -∇V, τ is a volume element
how do i end up with the following via integration by parts?
$$W=\frac{ε}{2}[-\int{\vec{E}\cdot(\vec{∇}V)dτ}+\oint{V\vec{E}\cdot d\vec{a}}$$]
where the vector a is an area element
thanks
$$W=\frac{ε}{2}\int{\vec{∇}\cdot\vec{E})Vdτ}$$
where ε is a constant, E= -∇V, τ is a volume element
how do i end up with the following via integration by parts?
$$W=\frac{ε}{2}[-\int{\vec{E}\cdot(\vec{∇}V)dτ}+\oint{V\vec{E}\cdot d\vec{a}}$$]
where the vector a is an area element
thanks