How to obtain Axial Load Capacity from Tapered Roller Bearings Catalog

Click For Summary
SUMMARY

This discussion focuses on selecting tapered roller bearings (TRB) for actuators, specifically addressing the axial load capacity derived from bearing catalogs. Participants emphasize the importance of understanding dynamic and static load ratings provided by manufacturers like SKF. The conversation also highlights the comparative analysis of back-to-back (DB) versus face-to-face (DF) bearing arrangements, noting that while DB configurations are generally recognized for superior axial load capacity and rigidity, specific calculations in this case show minimal differences in equivalent load and bearing life. Ultimately, the choice between DB and DF configurations depends on the specific load conditions and design requirements.

PREREQUISITES
  • Understanding of tapered roller bearing (TRB) specifications
  • Familiarity with dynamic and static load ratings
  • Knowledge of bearing arrangement configurations (DB vs. DF)
  • Basic principles of axial and radial load calculations
NEXT STEPS
  • Research SKF's detailed guidelines on tapered roller bearing selection
  • Learn about axial load capacity calculations for bearing arrangements
  • Explore the impact of bearing spacing on load distribution
  • Investigate case studies comparing DB and DF configurations in practical applications
USEFUL FOR

Mechanical engineers, bearing selection specialists, and anyone involved in actuator design and optimization of tapered roller bearings.

AeroGeek
Messages
12
Reaction score
1
Hello there,

I'm trying to select a tapered roller bearing (TRB) for my actuator, I know the peak axial force that is going to come. I have some radial load as well.
I want to select the TRB based on the axial load, but all the bearing catalogs or most of them give Dynamic and static Load Ratings.

Do I have to consider the given(from the bearing manufacturers) dynamic load rating as equivalent load and use it?
Thank you in Advance.
 
Engineering news on Phys.org
All bearing manufacturers usually explain how to select bearing size and give all the needed info.

You got the basic info very well-presented here. But SKF shows a more in-depth presentation of the same info here.
 
  • Like
Likes   Reactions: AeroGeek and Lnewqban
jack action said:
All bearing manufacturers usually explain how to select bearing size and give all the needed info.

You got the basic info very well-presented here. But SKF shows a more in-depth presentation of the same info here.
Thank you, it's really well shown here. Yes, some bearing manufacturers have more in-depth, and its confusing sometimes which to consider.
 
jack action said:
All bearing manufacturers usually explain how to select bearing size and give all the needed info.

You got the basic info very well-presented here. But SKF shows a more in-depth presentation of the same info here.
Hi I have gone through many literature now. and yet i'm unable to figure out why the Back to Back Tapered roller Bearing arrangement is better in axial load capacity. How to justify with numbers when compared to face to face configuration
 
Physix_Forums.JPG

I calculated the loads on points A and B, Keeping the bearings the same in back-to-back (DB) and face-to-face (DF), L2 for back-to-back is 4-5 times that of face-to-face, i.e. 50 mm for DB and 10mm for DF. After the calculations for Equivalent load and bearing life, both have not changed much. there is a slight reduction in Equivalent load and Bearing for the DF. If the difference is so less, then can I not use DF instead of DB ?
But all the textbooks and literature says DB has more axial load capacity and rigidity. I agree with rigidity because of L2, but in my case, since the bearings are very close that I am unable to figure out which is a better configuration.
In my case, the Axial load is higher, and the radial load is minimal.? Any thoughts would be welcome
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
8K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 5 ·
Replies
5
Views
5K