How to parametrize motion of a pendulum in terms of Cartesian coordinates?

Click For Summary
The discussion focuses on parametrizing the motion of a pendulum using Cartesian coordinates, starting from the pendulum's attachment point. Key equations relate the pendulum's angular position to its Cartesian coordinates, leading to a nonlinear differential equation for motion. The transformation of coordinate systems is explored, showing that the equations remain unchanged despite the shift in origin. When considering small displacements, terms involving higher powers of x can be neglected, simplifying the motion to a simple harmonic motion equation. The justification for discarding certain terms is questioned, emphasizing the need for clarity on the assumptions made in the analysis.
zenterix
Messages
774
Reaction score
84
Homework Statement
I'm finishing up a problem set from MIT OCW's 8.03 "Vibrations and Waves".
Relevant Equations
We are asked to parametrize the motion of the pendulum in terms of Cartesian coordinate ##x## in the coordinate system with "origin at the pendulum equilibrium position and ##x##-axis horizontal in the plane of the pendulum. Find the exact equation of motion of the pendulum in terms of ##x##".
1720299708349.png
1720301020886.png


Let the origin be where the pendulum string is attached to the ceiling.

$$\sin{\theta(t)}=\frac{x(t)}{L}\tag{1}$$

$$\cos{\theta(t)}=\frac{y(t)}{L}\tag{2}$$

$$\theta(t)=\sin^{-1}{\frac{x(t)}{L}}\tag{3}$$

$$\dot{\theta}(t)=\frac{\dot{x}(t)}{\sqrt{L^2-x^2(t)}}\tag{4}$$

$$\ddot{\theta}(t)=\frac{\ddot{x}(t)(L^2-x^2(t))+x(t)\dot{x}^2(t)}{(L^2-x^2)^{3/2}}=\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}\tag{5}$$

From Newton's 2nd law,

$$\vec{F}_g=-mg\hat{j}=m\vec{a}=m(L\ddot{\theta}\hat{\theta}-L\dot{\theta}^2\hat{r})\tag{6}$$

$$=(y\ddot{\theta}-x\dot{\theta}^2)\hat{i}+(x\ddot{\theta}+y\dot{\theta}^2)\hat{j}\tag{7}$$

Equating the components we get the two equations

$$\dot{\theta}^2=\frac{y}{x}\ddot{\theta}\tag{8}$$

$$x\ddot{\theta}+y\dot{\theta}^2=-g\tag{9}$$

Thus

$$\ddot{\theta}=-\frac{x}{L^2}g\tag{10}$$

and using (5) we get

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

This is a nonlinear differential equation.

Finally, let's change the coordinate system to have origin as prescribed in the problem statement (the position of the pendulum at the very bottom of its trajectory).

Let coordinate system 1 be the one used above (with origin at the ceiling) and coordinate system 2 be the new one with the origin at the bottom of the trajectory.

$$\vec{r}_{1}=\vec{r}_{1,2}+\vec{r}_2$$

where ##\vec{r}_{1,2}=-L\hat{j}## is the position of the origin of coordinate system 2's origin from the point of view of coordinate system 1. This is a fixed vector and so

$$\vec{v}_1=\vec{v}_2$$

$$\vec{a}_1=\vec{a}_2$$

Thus, in particular, for a point with coordinates ##(x_1,y_1)## in coordinate system 1 and ##(x_2,y_2)## in coordinate system 2 we have

$$x_1=x_2$$

$$\dot{x}_1=\dot{x}_2$$

$$\ddot{x}_1=\ddot{x}_2$$

If we sub these relationships into (11) there is no change in the differential equation.

Now, (11) looks quite complicated. I'm not sure if this is the differential equation that is being sought here. I obtained it essentially by taking derivatives of ##\theta(t)=\arcsin{\left (\frac{x}{L}\right )}##. Is there another, better way?
 
Last edited:
Physics news on Phys.org
The next question is what to do if we can assume that ##x## is very small.

Recall that the equation of motion found in the OP is

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

If ##x## is small I guess we can disregard the ##x^2## terms. If we do so we get

$$\frac{\ddot{x}}{L}+\frac{x\dot{x}^2}{L^3}=-\frac{g}{L^2}x$$

If we further eliminate the term ##x\dot{x}^2## then we are back to the SHM equation

$$\ddot{x}+\frac{g}{L}x=0$$

Assuming the calculations are correct, what justifies this last step. In other words, why do we know that we can just throw away the ##x\dot{x}^2## term?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
Replies
8
Views
2K
Replies
4
Views
4K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
5
Views
958
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
988
  • · Replies 11 ·
Replies
11
Views
805