How to parametrize motion of a pendulum in terms of Cartesian coordinates?

AI Thread Summary
The discussion focuses on parametrizing the motion of a pendulum using Cartesian coordinates, starting from the pendulum's attachment point. Key equations relate the pendulum's angular position to its Cartesian coordinates, leading to a nonlinear differential equation for motion. The transformation of coordinate systems is explored, showing that the equations remain unchanged despite the shift in origin. When considering small displacements, terms involving higher powers of x can be neglected, simplifying the motion to a simple harmonic motion equation. The justification for discarding certain terms is questioned, emphasizing the need for clarity on the assumptions made in the analysis.
zenterix
Messages
774
Reaction score
84
Homework Statement
I'm finishing up a problem set from MIT OCW's 8.03 "Vibrations and Waves".
Relevant Equations
We are asked to parametrize the motion of the pendulum in terms of Cartesian coordinate ##x## in the coordinate system with "origin at the pendulum equilibrium position and ##x##-axis horizontal in the plane of the pendulum. Find the exact equation of motion of the pendulum in terms of ##x##".
1720299708349.png
1720301020886.png


Let the origin be where the pendulum string is attached to the ceiling.

$$\sin{\theta(t)}=\frac{x(t)}{L}\tag{1}$$

$$\cos{\theta(t)}=\frac{y(t)}{L}\tag{2}$$

$$\theta(t)=\sin^{-1}{\frac{x(t)}{L}}\tag{3}$$

$$\dot{\theta}(t)=\frac{\dot{x}(t)}{\sqrt{L^2-x^2(t)}}\tag{4}$$

$$\ddot{\theta}(t)=\frac{\ddot{x}(t)(L^2-x^2(t))+x(t)\dot{x}^2(t)}{(L^2-x^2)^{3/2}}=\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}\tag{5}$$

From Newton's 2nd law,

$$\vec{F}_g=-mg\hat{j}=m\vec{a}=m(L\ddot{\theta}\hat{\theta}-L\dot{\theta}^2\hat{r})\tag{6}$$

$$=(y\ddot{\theta}-x\dot{\theta}^2)\hat{i}+(x\ddot{\theta}+y\dot{\theta}^2)\hat{j}\tag{7}$$

Equating the components we get the two equations

$$\dot{\theta}^2=\frac{y}{x}\ddot{\theta}\tag{8}$$

$$x\ddot{\theta}+y\dot{\theta}^2=-g\tag{9}$$

Thus

$$\ddot{\theta}=-\frac{x}{L^2}g\tag{10}$$

and using (5) we get

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

This is a nonlinear differential equation.

Finally, let's change the coordinate system to have origin as prescribed in the problem statement (the position of the pendulum at the very bottom of its trajectory).

Let coordinate system 1 be the one used above (with origin at the ceiling) and coordinate system 2 be the new one with the origin at the bottom of the trajectory.

$$\vec{r}_{1}=\vec{r}_{1,2}+\vec{r}_2$$

where ##\vec{r}_{1,2}=-L\hat{j}## is the position of the origin of coordinate system 2's origin from the point of view of coordinate system 1. This is a fixed vector and so

$$\vec{v}_1=\vec{v}_2$$

$$\vec{a}_1=\vec{a}_2$$

Thus, in particular, for a point with coordinates ##(x_1,y_1)## in coordinate system 1 and ##(x_2,y_2)## in coordinate system 2 we have

$$x_1=x_2$$

$$\dot{x}_1=\dot{x}_2$$

$$\ddot{x}_1=\ddot{x}_2$$

If we sub these relationships into (11) there is no change in the differential equation.

Now, (11) looks quite complicated. I'm not sure if this is the differential equation that is being sought here. I obtained it essentially by taking derivatives of ##\theta(t)=\arcsin{\left (\frac{x}{L}\right )}##. Is there another, better way?
 
Last edited:
Physics news on Phys.org
The next question is what to do if we can assume that ##x## is very small.

Recall that the equation of motion found in the OP is

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

If ##x## is small I guess we can disregard the ##x^2## terms. If we do so we get

$$\frac{\ddot{x}}{L}+\frac{x\dot{x}^2}{L^3}=-\frac{g}{L^2}x$$

If we further eliminate the term ##x\dot{x}^2## then we are back to the SHM equation

$$\ddot{x}+\frac{g}{L}x=0$$

Assuming the calculations are correct, what justifies this last step. In other words, why do we know that we can just throw away the ##x\dot{x}^2## term?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top