How to parametrize motion of a pendulum in terms of Cartesian coordinates?

Click For Summary
SUMMARY

This discussion focuses on parametrizing the motion of a pendulum using Cartesian coordinates. The equations derived include the relationships between angular displacement, linear displacement, and their derivatives, leading to a nonlinear differential equation represented as $$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g$$. The conversation also explores simplifying this equation under the assumption that the displacement \(x\) is small, ultimately leading to the simple harmonic motion equation $$\ddot{x}+\frac{g}{L}x=0$$. The discussion concludes with a query about the justification for neglecting the \(x\dot{x}^2\) term in the small displacement approximation.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with differential equations
  • Knowledge of trigonometric functions and their derivatives
  • Basic concepts of simple harmonic motion (SHM)
NEXT STEPS
  • Study the derivation of nonlinear differential equations in classical mechanics
  • Learn about small-angle approximations in pendulum motion
  • Explore the mathematical techniques for solving differential equations
  • Investigate the physical implications of simple harmonic motion in real-world systems
USEFUL FOR

Students of physics, mechanical engineers, and anyone interested in the mathematical modeling of pendulum dynamics and oscillatory motion.

zenterix
Messages
774
Reaction score
84
Homework Statement
I'm finishing up a problem set from MIT OCW's 8.03 "Vibrations and Waves".
Relevant Equations
We are asked to parametrize the motion of the pendulum in terms of Cartesian coordinate ##x## in the coordinate system with "origin at the pendulum equilibrium position and ##x##-axis horizontal in the plane of the pendulum. Find the exact equation of motion of the pendulum in terms of ##x##".
1720299708349.png
1720301020886.png


Let the origin be where the pendulum string is attached to the ceiling.

$$\sin{\theta(t)}=\frac{x(t)}{L}\tag{1}$$

$$\cos{\theta(t)}=\frac{y(t)}{L}\tag{2}$$

$$\theta(t)=\sin^{-1}{\frac{x(t)}{L}}\tag{3}$$

$$\dot{\theta}(t)=\frac{\dot{x}(t)}{\sqrt{L^2-x^2(t)}}\tag{4}$$

$$\ddot{\theta}(t)=\frac{\ddot{x}(t)(L^2-x^2(t))+x(t)\dot{x}^2(t)}{(L^2-x^2)^{3/2}}=\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}\tag{5}$$

From Newton's 2nd law,

$$\vec{F}_g=-mg\hat{j}=m\vec{a}=m(L\ddot{\theta}\hat{\theta}-L\dot{\theta}^2\hat{r})\tag{6}$$

$$=(y\ddot{\theta}-x\dot{\theta}^2)\hat{i}+(x\ddot{\theta}+y\dot{\theta}^2)\hat{j}\tag{7}$$

Equating the components we get the two equations

$$\dot{\theta}^2=\frac{y}{x}\ddot{\theta}\tag{8}$$

$$x\ddot{\theta}+y\dot{\theta}^2=-g\tag{9}$$

Thus

$$\ddot{\theta}=-\frac{x}{L^2}g\tag{10}$$

and using (5) we get

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

This is a nonlinear differential equation.

Finally, let's change the coordinate system to have origin as prescribed in the problem statement (the position of the pendulum at the very bottom of its trajectory).

Let coordinate system 1 be the one used above (with origin at the ceiling) and coordinate system 2 be the new one with the origin at the bottom of the trajectory.

$$\vec{r}_{1}=\vec{r}_{1,2}+\vec{r}_2$$

where ##\vec{r}_{1,2}=-L\hat{j}## is the position of the origin of coordinate system 2's origin from the point of view of coordinate system 1. This is a fixed vector and so

$$\vec{v}_1=\vec{v}_2$$

$$\vec{a}_1=\vec{a}_2$$

Thus, in particular, for a point with coordinates ##(x_1,y_1)## in coordinate system 1 and ##(x_2,y_2)## in coordinate system 2 we have

$$x_1=x_2$$

$$\dot{x}_1=\dot{x}_2$$

$$\ddot{x}_1=\ddot{x}_2$$

If we sub these relationships into (11) there is no change in the differential equation.

Now, (11) looks quite complicated. I'm not sure if this is the differential equation that is being sought here. I obtained it essentially by taking derivatives of ##\theta(t)=\arcsin{\left (\frac{x}{L}\right )}##. Is there another, better way?
 
Last edited:
Physics news on Phys.org
The next question is what to do if we can assume that ##x## is very small.

Recall that the equation of motion found in the OP is

$$\frac{\ddot{x}(t)}{(L^2-x^2)^{1/2}}+\frac{x\dot{x}^2}{(L^2-x^2)^{3/2}}=-\frac{x}{L^2}g\tag{11}$$

If ##x## is small I guess we can disregard the ##x^2## terms. If we do so we get

$$\frac{\ddot{x}}{L}+\frac{x\dot{x}^2}{L^3}=-\frac{g}{L^2}x$$

If we further eliminate the term ##x\dot{x}^2## then we are back to the SHM equation

$$\ddot{x}+\frac{g}{L}x=0$$

Assuming the calculations are correct, what justifies this last step. In other words, why do we know that we can just throw away the ##x\dot{x}^2## term?
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
Replies
8
Views
2K
Replies
4
Views
4K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
891