How to picture a radial field around a 3d object?

Click For Summary

Homework Help Overview

The discussion revolves around understanding the concept of a radial electric field around a spherical conductor, specifically a metal dome, and how to visualize it in relation to equipotential surfaces and voltage calculations.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to understand how the diameter of the dome affects the radial field visualization and questions the calculation of surface voltage and equipotential labeling. Participants suggest treating the spherical conductor as a point charge and clarify the importance of using distinct symbols for electric field and potential.

Discussion Status

Participants are exploring different interpretations of the problem, particularly regarding the assumptions about charge distribution and the application of equations for potential and electric fields. Some guidance has been provided on how to approach the calculations, but a consensus on the method has not been reached.

Contextual Notes

The original poster expresses uncertainty about the relevance of the dome's diameter and the calculations leading to different voltage values. There is also a mention of potential confusion regarding the symbols used for electric field and potential.

jackiepollock
Messages
11
Reaction score
2
Homework Statement
The problem is asking me to imagine a radial field around a Van de Graaff generator and finding the potential values and electric field strength in varying distances from the surface.
Relevant Equations
For electric field strength:E= Q/4πϵ0r^2

For potential :E= Q/4πϵ0r
Hello!

First off, for a), I am not too sure how to picture a radial field around a 3d object. I know that this spherical metal dome is basically a enlarged version of an atom, but since with problems on radial field around an atom, I don't have to consider its diameter, I'm not sure how the diameter of 30cm should make a difference to picturing the radial field.

for b),
The answer says: equipotentials concentric with dome surface; increasing separation of equipotentials; surface voltage is 15 000 V, so equipotential labelling should decrease from that following 1/r relationship. I am not too sure how this 15000V is calculated.

for c)
I tried 8.99 x 10^9 x 2.5 x 10^-7/(0.05)^2, which is 899000 Vm^-1, different from the answer provided, being 56000 Vm^-1. What did I do wrong?

Thank you so much for the help!

A Van de Graaff generator is charged with 2.5 x 10-7 coulombs in a.png
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
First: don't use the same symbol for field and potential!
The spherical conductor can be treated (from outside) as if it was a point charge located at the centre of the sphere. So for the surface voltage, use the potential equation with r = the radius of the sphere.
What is r at a distance of 5 cm from the surface?
 
  • Like
  • Informative
Likes   Reactions: Delta2, DaveC426913 and jackiepollock
mjc123 said:
First: don't use the same symbol for field and potential!
The spherical conductor can be treated (from outside) as if it was a point charge located at the centre of the sphere. So for the surface voltage, use the potential equation with r = the radius of the sphere.
What is r at a distance of 5 cm from the surface?
Got it! I've tried what you said and gotten the right answers. Thank you so much!
 
  • Like
Likes   Reactions: Delta2
mjc123 said:
The spherical conductor can be treated (from outside) as if it was a point charge located at the centre of the sphere.
There is a caveat that can be important. A spherical object can safely be treated as a point charge if its charge distribution is spherically symmetric. A spherical conductor will relax to have a uniform charge distribution if there is no external field causing an asymmetry.

One reasonably assumes that no very large asymmetric external field is present in this case. So no significant asymmetry in charge is to be expected. So the caveat is unimportant here.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K