How to prove that the shortest distance between two points is a line?

madhura2498
Messages
1
Reaction score
0
Homework Statement
This is the given functional derivative of distance between the two points:
$$\frac{\partial L[y]}{\partial x_{i} } = \frac{d}{d \lambda } L[y(x) + \lambda \delta(x- x_{i} )] \Big|_{\lambda =0}$$
where $\delta(x-x_i)$ is the Dirac's delta function.

I know the Hamilton Variation method. Don't know how to use the Dirac's delta function in the derivation.
Relevant Equations
$$\frac{\partial L[y]}{\partial x_{i} } = \frac{d}{d \lambda } L[y(x) + \lambda \delta(x- x_{i} )] \Big|_{\lambda =0}$$
where $\delta(x-x_i)$ is the Dirac's delta function.
I tried using hamilton method but i don't think that's correct
 
Physics news on Phys.org
Are you trying to use Calculus of Variations to prove it?

It reminded me of the brachistochrone problem ie the time is timewise shortest downhill path in a constant g field is a catenary and not a straight line.

https://en.wikipedia.org/wiki/Brachistochrone_curve

so perhaps a similar math setup with g=0 would prove it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top