MHB How to Prove the Inequality for a, b, and c in the Range of 0 to 1?

Click For Summary
The discussion centers on proving the inequality $\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}$ for variables a, b, and c within the range of 0 to 1. It is noted that the inequality does not hold when a, b, and c are all 0 or all 1. A participant expresses doubt about the validity of the statement, suggesting that the inequality may actually go the other way. The conversation highlights the importance of careful consideration of boundary conditions in mathematical proofs. Ultimately, the focus remains on finding a valid proof for the stated inequality.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the inequality:

$\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}, \;\;\;\;a,b,c \in [0;1].$
 
Mathematics news on Phys.org
lfdahl said:
Prove the inequality:

$\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}, \;\;\;\;a,b,c \in [0;1].$
Your domain is (0, 1). If a = b = c = 0 or if a = b = c = 1 the inequality is false.

-Dan
 
topsquark said:
Your domain is (0, 1). If a = b = c = 0 or if a = b = c = 1 the inequality is false.

-Dan

Hi, Dan!

Are you quite sure in your statement?
 
(Swearing) I had the inequality going the other way!

Thanks for the catch.

-Dan
 
Hint:

Use a trigonometric substitution
 
Here´s the suggested solution:

Since $a,b,c \in [0;1]$, we have:
\[\exists x,y,z \in \left [ 0;\frac{\pi}{2} \right ]:\: \: \sin^2x = a, \: \: \sin^2y = b\: \: and\: \: \sin^2z = c.\]The inequality then reads:\[\sin x\cos y\cos z + \sin y \cos x\cos z + \sin z\cos x\cos y \leq 1 + \sin x\sin y\sin z\]\[ \cos z(\sin x \cos y + \sin y \cos x)+\sin z (\cos x \cos y - \sin x \sin y) \leq 1 \]
$\;\;\;\;\; \cos z \sin (x+y)+\sin z \cos (x+y) = \sin(x+y+z) \leq 1$, and we´re done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K