How to Prove the Inequality for a, b, and c in the Range of 0 to 1?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}$ holds true for variables a, b, and c within the range [0, 1]. The discussion highlights that the inequality does not hold when a, b, and c are either 0 or 1. A proposed solution was suggested to clarify the conditions under which the inequality is valid, addressing a misunderstanding regarding its direction.

PREREQUISITES
  • Understanding of inequalities in real analysis
  • Familiarity with square root functions
  • Knowledge of the properties of numbers in the interval [0, 1]
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of inequalities in real analysis
  • Explore the implications of boundary conditions in inequalities
  • Investigate the use of square roots in mathematical proofs
  • Learn about the application of inequalities in optimization problems
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in understanding inequalities and their proofs within constrained domains.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the inequality:

$\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}, \;\;\;\;a,b,c \in [0;1].$
 
Mathematics news on Phys.org
lfdahl said:
Prove the inequality:

$\sqrt{a(1-b)(1-c)}+\sqrt{b(1-a)(1-c)}+\sqrt{c(1-a)(1-b)} \le 1 + \sqrt{abc}, \;\;\;\;a,b,c \in [0;1].$
Your domain is (0, 1). If a = b = c = 0 or if a = b = c = 1 the inequality is false.

-Dan
 
topsquark said:
Your domain is (0, 1). If a = b = c = 0 or if a = b = c = 1 the inequality is false.

-Dan

Hi, Dan!

Are you quite sure in your statement?
 
(Swearing) I had the inequality going the other way!

Thanks for the catch.

-Dan
 
Hint:

Use a trigonometric substitution
 
Here´s the suggested solution:

Since $a,b,c \in [0;1]$, we have:
\[\exists x,y,z \in \left [ 0;\frac{\pi}{2} \right ]:\: \: \sin^2x = a, \: \: \sin^2y = b\: \: and\: \: \sin^2z = c.\]The inequality then reads:\[\sin x\cos y\cos z + \sin y \cos x\cos z + \sin z\cos x\cos y \leq 1 + \sin x\sin y\sin z\]\[ \cos z(\sin x \cos y + \sin y \cos x)+\sin z (\cos x \cos y - \sin x \sin y) \leq 1 \]
$\;\;\;\;\; \cos z \sin (x+y)+\sin z \cos (x+y) = \sin(x+y+z) \leq 1$, and we´re done.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K