MHB How to prove this integral equation?

Click For Summary
To prove the integral equation $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$, a substitution method is applied, transforming the integral into a form involving $\arcsin t$. Integration by parts is then utilized to derive expressions for both sides of the equation. By manipulating these integrals and applying symmetry properties, it is shown that the left-hand side can be expressed in terms of the right-hand side. Ultimately, the equality is established, confirming the original statement. The proof effectively demonstrates the relationship between the two integrals through careful algebraic manipulation and integration techniques.
Ganesh Ujwal
Messages
51
Reaction score
0
How to prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$

To prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true, first I started calculating the integral of the left indefinitely
$$ \int {x\,f(\sin x)\,\,dx} $$
using substitution:
$$ \sin x = t,\quad x = \arcsin t, \quad {dx = \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$
is obtained:
$$ \int {x\,f(\sin x)\,\,dx} = \int {\arcsin t \cdot f(t) \cdot \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$
$$ \qquad\quad = \int {\frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }} \cdot f(t)} $$
Then using integration by parts:
$$ \begin{array}{*{20}{c}}
{u = f(t)},&{dv = \frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }}} \\
{du = f'(t)\,dt},&{v = \frac{{{{(\arcsin t)}^2}}}{2}}
\end{array} $$
then:
\begin{align*}
\int {x\,f(\sin x)\,\,dx} &= f(t) \cdot \frac{{{{(\arcsin t)}^2}}}{2} - \int {\frac{{{{(\arcsin t)}^2}}}{2}} \cdot f'(t)\,dt \\
&= f(\sin x) \cdot \frac{{{x^2}}}{2} - \int {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\
\end{align*}
Now, evaluating from 0 to $\pi$
\begin{align}
\int_0^\pi {x\,f(\sin x)} \,dx & = \left[ {f(t) \cdot \frac{{{x^2}}}{2}} \right]_0^\pi - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\
\int_0^\pi {x\,f(\sin x)} \,dx & = f(0) \cdot \frac{{{\pi ^2}}}{2} - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[1] \\
\end{align}
On the other hand, doing the same process with the integral on the right side I get:
\begin{equation}\int_0^\pi {f(\sin x)} \,dx = f(0) \cdot \pi - \int_0^\pi {x \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[2] \end{equation}
And even here I do not have enough data to say that equality $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true.

Can anyone suggest me what to do with the equalities [1] and [2]?
 
Physics news on Phys.org
Ganesh Ujwal said:
How to prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$

It might be easier to change the problem to proving

$$\int_0^\pi \left(\frac{\pi}{2}-x \right)\,f(\sin x)\, dx = 0 $$
 
$$\int_0^\pi {x\,f(\sin x)} \,dx =\frac{\pi}{2}\int_0^\pi {f(\sin x)} \,dx $$$$\int_0^\pi {x\,f(\sin x)} \,dx =\int_0^\pi {x\,f(\sin (\pi-x))} \,dx $$

$u=\pi-x \Rightarrow dx=-dx$

$x=0 \Rightarrow u=\pi, x=\pi \Rightarrow u=0$

$$\int_0^\pi {x\,f(\sin x)} \,dx =\int_0^\pi {x\,f(\sin (\pi-x))} \,dx =-\int_\pi^0 {(\pi-u)\,f(\sin u)} \,du \\ =\int_0^\pi {(\pi-u)\,f(\sin u)} \,du=\pi \int_0^\pi {\,f(\sin u)} \,du-\int_0^\pi {u\,f(\sin u)} \,du=\pi \int_0^\pi {\,f(\sin x)} \,dx-\int_0^\pi {x\,f(\sin x)} \,dx \\ \Rightarrow \int_0^\pi {x\,f(\sin x)} \,dx=\pi \int_0^\pi {\,f(\sin x)} \,dx-\int_0^\pi {x\,f(\sin x)} \,dx \\ \Rightarrow 2 \int_0^\pi {x\,f(\sin x)} \,dx=\pi \int_0^\pi {\,f(\sin x)} \,dx \\ \Rightarrow \int_0^\pi {x\,f(\sin x)} \,dx=\frac{\pi}{2}\int_0^\pi {\,f(\sin x)} \,dx$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
Replies
2
Views
3K
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K