MHB How to prove this integral equation?

Click For Summary
To prove the integral equation $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$, a substitution method is applied, transforming the integral into a form involving $\arcsin t$. Integration by parts is then utilized to derive expressions for both sides of the equation. By manipulating these integrals and applying symmetry properties, it is shown that the left-hand side can be expressed in terms of the right-hand side. Ultimately, the equality is established, confirming the original statement. The proof effectively demonstrates the relationship between the two integrals through careful algebraic manipulation and integration techniques.
Ganesh Ujwal
Messages
51
Reaction score
0
How to prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$

To prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true, first I started calculating the integral of the left indefinitely
$$ \int {x\,f(\sin x)\,\,dx} $$
using substitution:
$$ \sin x = t,\quad x = \arcsin t, \quad {dx = \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$
is obtained:
$$ \int {x\,f(\sin x)\,\,dx} = \int {\arcsin t \cdot f(t) \cdot \frac{{dt}}{{\sqrt {1 - {t^2}} }}}$$
$$ \qquad\quad = \int {\frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }} \cdot f(t)} $$
Then using integration by parts:
$$ \begin{array}{*{20}{c}}
{u = f(t)},&{dv = \frac{{\arcsin t\,dt}}{{\sqrt {1 - {t^2}} }}} \\
{du = f'(t)\,dt},&{v = \frac{{{{(\arcsin t)}^2}}}{2}}
\end{array} $$
then:
\begin{align*}
\int {x\,f(\sin x)\,\,dx} &= f(t) \cdot \frac{{{{(\arcsin t)}^2}}}{2} - \int {\frac{{{{(\arcsin t)}^2}}}{2}} \cdot f'(t)\,dt \\
&= f(\sin x) \cdot \frac{{{x^2}}}{2} - \int {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\
\end{align*}
Now, evaluating from 0 to $\pi$
\begin{align}
\int_0^\pi {x\,f(\sin x)} \,dx & = \left[ {f(t) \cdot \frac{{{x^2}}}{2}} \right]_0^\pi - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \\
\int_0^\pi {x\,f(\sin x)} \,dx & = f(0) \cdot \frac{{{\pi ^2}}}{2} - \int_0^\pi {\frac{{{x^2}}}{2} \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[1] \\
\end{align}
On the other hand, doing the same process with the integral on the right side I get:
\begin{equation}\int_0^\pi {f(\sin x)} \,dx = f(0) \cdot \pi - \int_0^\pi {x \cdot f'(\sin x)\,\cos x\,dx} \qquad ..[2] \end{equation}
And even here I do not have enough data to say that equality $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$ is true.

Can anyone suggest me what to do with the equalities [1] and [2]?
 
Physics news on Phys.org
Ganesh Ujwal said:
How to prove that $\int_0^\pi {x\,f(\sin x)\,} dx = \frac{\pi }{2}\int_0^\pi {f(\sin x)} \,dx$

It might be easier to change the problem to proving

$$\int_0^\pi \left(\frac{\pi}{2}-x \right)\,f(\sin x)\, dx = 0 $$
 
$$\int_0^\pi {x\,f(\sin x)} \,dx =\frac{\pi}{2}\int_0^\pi {f(\sin x)} \,dx $$$$\int_0^\pi {x\,f(\sin x)} \,dx =\int_0^\pi {x\,f(\sin (\pi-x))} \,dx $$

$u=\pi-x \Rightarrow dx=-dx$

$x=0 \Rightarrow u=\pi, x=\pi \Rightarrow u=0$

$$\int_0^\pi {x\,f(\sin x)} \,dx =\int_0^\pi {x\,f(\sin (\pi-x))} \,dx =-\int_\pi^0 {(\pi-u)\,f(\sin u)} \,du \\ =\int_0^\pi {(\pi-u)\,f(\sin u)} \,du=\pi \int_0^\pi {\,f(\sin u)} \,du-\int_0^\pi {u\,f(\sin u)} \,du=\pi \int_0^\pi {\,f(\sin x)} \,dx-\int_0^\pi {x\,f(\sin x)} \,dx \\ \Rightarrow \int_0^\pi {x\,f(\sin x)} \,dx=\pi \int_0^\pi {\,f(\sin x)} \,dx-\int_0^\pi {x\,f(\sin x)} \,dx \\ \Rightarrow 2 \int_0^\pi {x\,f(\sin x)} \,dx=\pi \int_0^\pi {\,f(\sin x)} \,dx \\ \Rightarrow \int_0^\pi {x\,f(\sin x)} \,dx=\frac{\pi}{2}\int_0^\pi {\,f(\sin x)} \,dx$$
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K