MHB How to Prove this Trigonometric Identity?

Click For Summary
The discussion focuses on proving the trigonometric identity involving sine and cosine functions. By letting θ equal 5¾°, the problem simplifies to proving that the sum of three sine-to-cosine ratios equals half the difference of two tangent functions. The key step involves establishing the identity that links the sine and cosine ratios to the tangent functions. The proof is constructed by substituting θ, 3θ, and 9θ into the derived identity, ultimately confirming the original statement. The final step is to prove the foundational identity, which remains open for further exploration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
 
Last edited by a moderator:
Mathematics news on Phys.org
anemone said:
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes
Prove $$\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} = \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr)$$.
Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.
 
Opalg said:
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes

Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.

we have tan 3x - tan x = sin 3x/ cos 3x - sin x/ cos x
= ( sin 3x cos x - cos 3x sin x)/ ( cos 3x sin x)
= sin 2x/( cos3x sin x)
= ( 2 sin x cos x)/(cos 3x sin x)
= 2 sin x / cos 3x
or sin x/ cos 3x = 1/2( tan 3x - tan x)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K