MHB How to Prove this Trigonometric Identity?

AI Thread Summary
The discussion focuses on proving the trigonometric identity involving sine and cosine functions. By letting θ equal 5¾°, the problem simplifies to proving that the sum of three sine-to-cosine ratios equals half the difference of two tangent functions. The key step involves establishing the identity that links the sine and cosine ratios to the tangent functions. The proof is constructed by substituting θ, 3θ, and 9θ into the derived identity, ultimately confirming the original statement. The final step is to prove the foundational identity, which remains open for further exploration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
 
Last edited by a moderator:
Mathematics news on Phys.org
anemone said:
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes
Prove $$\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} = \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr)$$.
Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.
 
Opalg said:
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes

Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.

we have tan 3x - tan x = sin 3x/ cos 3x - sin x/ cos x
= ( sin 3x cos x - cos 3x sin x)/ ( cos 3x sin x)
= sin 2x/( cos3x sin x)
= ( 2 sin x cos x)/(cos 3x sin x)
= 2 sin x / cos 3x
or sin x/ cos 3x = 1/2( tan 3x - tan x)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top