MHB How to Prove this Trigonometric Identity?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
 
Last edited by a moderator:
Mathematics news on Phys.org
anemone said:
Prove $$\frac{\sin\left(5\tfrac{3}{4}^{\circ} \right)}{\cos\left(17\tfrac{1}{4}^{\circ} \right)}+\frac{\sin\left(17\tfrac{1}{4}^{\circ} \right)}{\cos\left(51\tfrac{3}{4}^{\circ} \right)}+\frac{\sin\left(51\tfrac{3}{4}^{\circ} \right)}{\cos\left(155\tfrac{1}{4}^{\circ} \right)}=\frac{1}{2}\left(\tan\left(155\tfrac{1}{4}^{\circ} \right)-\tan\left(5\tfrac{3}{4}^{\circ} \right) \right)$$
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes
Prove $$\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} = \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr)$$.
Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.
 
Opalg said:
Let $\theta = 5{\frac34}^\circ$. Then the problem becomes

Suppose we knew that $$\frac{\sin x}{\cos(3x)} = \tfrac12\bigl(\tan(3x) - \tan x\bigr).\quad(*)$$

Putting $x$ equal to $\theta$, then $3\theta$, and then $9\theta$, it would follow that $$\begin{aligned}\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} &= \tfrac12\bigl(\tan(3\theta) - \tan\theta\bigr)+ \tfrac12\bigl(\tan(9\theta) - \tan(3\theta)\bigr)+ \tfrac12\bigl(\tan(27\theta) - \tan(9\theta)\bigr) \\ &= \tfrac12\bigl(\tan(27\theta) - \tan\theta\bigr), \end{aligned}$$ as required. It just remains to prove the identity (*), which I'll leave for someone else.

we have tan 3x - tan x = sin 3x/ cos 3x - sin x/ cos x
= ( sin 3x cos x - cos 3x sin x)/ ( cos 3x sin x)
= sin 2x/( cos3x sin x)
= ( 2 sin x cos x)/(cos 3x sin x)
= 2 sin x / cos 3x
or sin x/ cos 3x = 1/2( tan 3x - tan x)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top