MHB How to simplify algebraic expression

AI Thread Summary
The discussion focuses on simplifying the algebraic expression \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2}(\frac{x - 3}{x - 2})^{-\frac{1}{2}} \cdot \frac{1}{(x - 2)^{2}}. Participants confirm that the steps taken to simplify the expression are correct, leading to the final result of \frac{1}{2(x - 3)(x - 2)}. There is a consensus that no errors were made during the simplification process. The discussion emphasizes clarity in each transformation of the expression. Overall, the simplification appears accurate and well-validated by contributors.
hatelove
Messages
101
Reaction score
1
\frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2}(\frac{x - 3}{x - 2})^{-\frac{1}{2}} \cdot \frac{1}{(x - 2)^{2}}

\frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2}(\frac{x - 3}{x - 2})^{-\frac{1}{2}} \cdot \frac{1}{(x - 2)^{2}} \\<br /> \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2}\frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{(x - 2)^{2}} \\<br /> \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{\frac{1}{2}}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{(x - 2)^{2}} \\<br /> \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{(x - 2)^{2}} \\<br /> \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{(\frac{x - 3}{x - 2})^{\frac{1}{2}}} \cdot \frac{1}{2(x - 2)^{2}} \\<br /> \frac{1}{(\frac{x - 3}{x - 2})} \cdot \frac{1}{2(x - 2)^{2}} \\<br /> \frac{1}{(x - 3)} \cdot \frac{1}{2(x - 2)} \\<br /> \frac{1}{2(x - 3)(x - 2)}

Which step have I done incorrectly?
 
Mathematics news on Phys.org
I don't see that you have done any step incorrectly! What makes you thing you have?
 
Can't find any errors, seems right.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top