How to Simplify Nested Radicals?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Radical Simplify
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\sqrt{1+a^2+\sqrt{1+a^2+a^4}}$$.
 
Mathematics news on Phys.org
anemone said:
Simplify $$\sqrt{1+a^2+\sqrt{1+a^2+a^4}}$$.
let :
$$\sqrt{1+a^2+\sqrt{1+a^2+a^4}}=\sqrt x +\sqrt y$$.
square both side we obtain :
$x+y=1+a^2----(1)$
$xy=\dfrac {a^4+a^2+1}{4}----(2)$
solving for (1)(2) we get :
$x=\dfrac {a^2+a+1}{2}$
$y=\dfrac {a^2-a+1}{2}$
or
$x=\dfrac {a^2-a+1}{2}$
$y=\dfrac {a^2+a+1}{2}$
$\therefore \,\, \sqrt{1+a^2+\sqrt{1+a^2+a^4}}=\sqrt{\dfrac{a^2+a+1}{2}}+\sqrt{\dfrac{a^2-a+1}{2}}$
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K