How to simplify this complex expression?

AI Thread Summary
The discussion revolves around simplifying a complex expression involving roots and polar forms. Participants suggest starting with the polar representation of the complex numbers and express them in the form \( re^{i\theta} \). There are debates about the correct application of the cubic root and how to equate real and imaginary parts in the factorization process. Some participants propose using the identity for multiplying by one to simplify the expression, while others emphasize the importance of correctly identifying the components of the complex numbers involved. The conversation ultimately highlights the complexity of handling cubic roots in the context of complex numbers.
yamata1
Messages
61
Reaction score
1
Poster has been reminded to show their work on schoolwork problems
Homework Statement
Simplify $$\frac{(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}{(-1)^{2/9}- (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}$$
Relevant Equations
wolfram gives us this result : $$-1 - \frac{(2 i)}{(3^{1/6} + -i)}$$
I don't know how to start with the factorization.
$$\frac{(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}{(-1)^{2/9}- (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}$$
Any hints would be nice. Thank you.
 
Physics news on Phys.org
I learned to multiply by 1 , like in$${a + bi\over c+di} = {a + bi\over c+di}\; {c - di\over c-di} = {(a + bi)(c-di)\over c^2+d^2} $$

But you should first read the guidelines -- they require you post your own attempt first !
 
  • Like
Likes berkeman
BvU said:
I learned to multiply by 1 , like ina+bic+di=a+bic+dic−dic−di=(a+bi)(c−di)c2+d2

But you should first read the guidelines -- they require you post your own attempt first !
My attempt : multiplying numerator and denominator by ##
(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}
wehave
\frac{(-1)^{4/9} +2(-1)^{2/9}(-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}+ (-3/2 - \frac{i}{2} \sqrt{3})^{(2/3)}}{(-1)^{4/9}+ (-3/2 - \frac{i}{2} \sqrt{3})^{(2/3)}}

##
 
yamata1 said:
multiplying numerator and denominator
You fist want to write them in an ##a+bi## form. The ##(-1)^{2\over 9}## is a complex number.
 
BvU said:
You fist want to write them in an ##a+bi## form. The ##(-1)^{2\over 9}## is a complex number.
How do I find the real part of ##
(-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}## ? The cubic root makes it hard for me to see what to do here.
 
yamata1 said:
How do I find the real part of ##
(-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}## ? The cubic root makes it hard for me to see what to do here.
set $$(-3/2 - \frac{i}{2} \sqrt{3})=(a+bi)^3$$ then expand the RHS split real and imaginary parts and equate the real part of the RHS to the real part of the LHS and the imaginary part of the RHS to the imaginary part of the LHS. You then will have a system of equations with a,b as uknowns.
 
Last edited:
yamata1 said:
How do I find the real part of ##(-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}## ? The cubic root makes it hard for me to see what to do here.
I'd start by expressing ##-\frac 32 - i \frac{\sqrt 3}{2}## in polar form ##re^{i\theta}##.
 
  • Like
Likes Delta2
vela said:
I'd start by expressing ##-\frac 32 - i \frac{\sqrt 3}{2}## in polar form ##re^{i\theta}##.
##(-\frac 32 - i \frac{\sqrt 3}{2})^{1/3}= \sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}## and ##(-1)^{2\over 9}=\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}##
When trying to solve ##(-3/2 - \frac{i}{2} \sqrt{3})=(a+bi)^3## I get ##a(a^2-b-2b^2)=\frac{3}{2}## and ##b(2a^2+a-b^2)=\frac{\sqrt{3}}{2}##.
How can I sovle this 3rd order system ?
 
Last edited:
yamata1 said:
##-\frac 32 - i \frac{\sqrt 3}{2}= \sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}## and ##(-1)^{2\over 9}=\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}##
When trying to solve ##(-3/2 - \frac{i}{2} \sqrt{3})=(a+bi)^3## I get ##a(a^2-b-2b^2)=\frac{3}{2}## and ##b(2a^2+a-b^2)=\frac{\sqrt{3}}{2}##.
How can I sovle this 3rd order system ?
I think my idea was not so good, we better abandon it.
 
  • #10
Follow Vela, both for the ##

(-1)^{2/9}## and for the ## (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)} ## :wink:

(Small disclaimer: I didn't do the exercise to the very end, just ventilated (lightheartedly :rolleyes:) an idea on how to attack it)
 
  • Like
Likes Delta2
  • #11
yamata1 said:
$$(-\frac 32 - i \frac{\sqrt 3}{2})^{1/3}= \sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}$$
I don't understand what you did here. For ##z=-\frac 32 - i \frac{\sqrt 3}{2}##, we want you to give us two numbers, one for ##r## and one for ##\theta##. Do you know how to find them?
 
  • #12
vela said:
I don't understand what you did here. For ##z=-\frac 32 - i \frac{\sqrt 3}{2}##, we want you to give us two numbers, one for ##r## and one for ##\theta##. Do you know how to find them?
If I write
##e^{3i\pi}=(e^{i\pi})^3=(-1)^3=-1##
Then ##z=-\frac {3}{2} - i \frac{\sqrt 3}{2}=-\sqrt 3 e^{i\pi/6}
##
 
  • #13
yamata1 said:
If I write
##e^{3i\pi}=(e^{i\pi})^3=(-1)^3=-1##
Then ##z=-\frac {3}{2} - i \frac{\sqrt 3}{2}=-\sqrt 3 e^{i\pi/6}
##
You want ##r## to be positive and incorporate the negative sign out front into the phase to get ##z=\sqrt 3 e^{i 7\pi/6}##. Now you're ready to calculate ##z^{1/3}##, then you can convert the result back to rectangular form.
 
  • Like
Likes yamata1
  • #14
yamata1 said:
If I write
##e^{3i\pi}=(e^{i\pi})^3=(-1)^3=-1##
Then ##z=-\frac {3}{2} - i \frac{\sqrt 3}{2}=-\sqrt 3 e^{i\pi/6}
##
I think I've clocked it.
##
\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}=
\sqrt[3\,]{e^{\frac {2i\pi}{3}}}##
##\sqrt[3\,]{e^{\frac {2i\pi}{3}}} +\sqrt[3\,]{-\sqrt 3 e^{i\pi/6}}= 3^{1/6} e^{-5i\pi/18}+e^{\frac {4i\pi}{18}}## ##=e^{\frac {4i\pi}{18}}(3^{1/6}e^{\frac {-9i\pi}{18}}+1)## ##=e^{\frac {4i\pi}{18}}(-i3^{1/6}+1)##
##
\frac{(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}{(-1)^{2/9}- (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}## ##= \frac{\sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}+\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}}{\sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}-\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}} =##

##\frac{(-i3^{1/6}+1)}{(i3^{1/6}+1)}=
-1 - \frac{(2 i)}{(3^{1/6} + -i)} =\frac{-3^{1/6}-i}{3^{1/6}-i}

##
 
  • #15
yamata1 said:
I think I've clocked it.
##
\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}=
\sqrt[3\,]{e^{\frac {2i\pi}{3}}}##
The above is clearly wrong (you are equating a complex number that has magnitude 1, with another that doesn't have magnitude 1 (correct if i am wrong but ##(e^{3i\pi}+e^{\frac{\pi}{3}})## doesn't have magnitude 1) and additionally i don't see how it relates to this problem.
##\sqrt[3\,]{e^{\frac {2i\pi}{3}}} +\sqrt[3\,]{-\sqrt 3 e^{i\pi/6}}= 3^{1/6} e^{-5i\pi/18}+e^{\frac {4i\pi}{18}}## ##=e^{\frac {4i\pi}{18}}(3^{1/6}e^{\frac {-9i\pi}{18}}+1)## ##=e^{\frac {4i\pi}{18}}(-i3^{1/6}+1)##
The above looks correct, but then again i don't see how you use it in what follows.
##
\frac{(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}{(-1)^{2/9}- (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}## ##= \frac{\sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}+\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}}{\sqrt[3\,] {e^{3i\pi}-e^{\frac{\pi}{3}}}-\sqrt[3\,] {e^{3i\pi}+e^{\frac{\pi}{3}}}} =##

##\frac{(-i3^{1/6}+1)}{(i3^{1/6}+1)}=
-1 - \frac{(2 i)}{(3^{1/6} + -i)} =\frac{-3^{1/6}-i}{3^{1/6}-i}

##
 
  • #16
Delta2 said:
The above is clearly wrong (you are equating a complex number that has magnitude 1, with another that doesn't have magnitude 1 (correct if i am wrong but ##(e^{3i\pi}+e^{\frac{\pi}{3}})## doesn't have magnitude 1) and additionally i don't see how it relates to this problem.
The above looks correct, but then again i don't see how you use it in what follows.
Yes the mistake is in the exponent##(e^{3i\pi}+e^{\frac{\pi}{3}})##. It's ##(e^{3i\pi}+e^{\frac{i\pi}{3}})##.
I just plugged ##\sqrt[3\,]{e^{\frac {2i\pi}{3}}} +\sqrt[3\,]{-\sqrt 3 e^{i\pi/6}}= 3^{1/6} e^{-5i\pi/18}+e^{\frac {4i\pi}{18}}## into ##\sqrt[3\,] {e^{3i\pi}-e^{\frac{i\pi}{3}}}+\sqrt[3\,] {e^{3i\pi}+e^{\frac{i\pi}{3}}}##
 
  • #17
yamata1 said:
Yes the mistake is in the exponent##(e^{3i\pi}+e^{\frac{\pi}{3}})##. It's ##(e^{3i\pi}+e^{\frac{i\pi}{3}})##.
It is still wrong, it is ##(e^{3i\pi}+e^{\frac{i\pi}{3}})\neq e^{\frac{2i\pi}{3}}##
 
  • #18
Delta2 said:
It is still wrong, it is ##(e^{3i\pi}+e^{\frac{i\pi}{3}})\neq e^{\frac{2i\pi}{3}}##
##(e^{3i\pi}+e^{\frac{i\pi}{3}})=-1+e^{\frac{i\pi}{3}}= -1 +1/2 + \frac{(i \sqrt(3))}{2}=-1/2 + \frac{(i \sqrt(3))}{2} =e^{\frac{2i\pi}{3}}##
 
  • Like
Likes Delta2
  • #19
Ok I was wrong and you were right on this, but where does this expression ##e^{3i\pi}+e^{\frac{i\pi}{3}}## comes from, the original expression in post #1 doesn't contain it.
 
  • #20
Delta2 said:
Ok I was wrong and you were right on this, but where does this expression ##e^{3i\pi}+e^{\frac{i\pi}{3}}## comes from, the original expression in post #1 doesn't contain it.
I added it in the 8th post .
 
  • #21
Ok but I still don't see why we have to pass through this ##e^{3i\pi}+e^{\frac{i\pi}{3}}## as an intermediate step. It is enough to express ##(-1)^\frac{2}{9}## and ##\frac{-3}{2}-\frac{\sqrt{3}}{2}## in polar forms and then proceed.
This line you do at post #14
yamata1 said:
##\sqrt[3\,]{e^{\frac {2i\pi}{3}}} +\sqrt[3\,]{-\sqrt 3 e^{i\pi/6}}= 3^{1/6} e^{-5i\pi/18}+e^{\frac {4i\pi}{18}}## ##=e^{\frac {4i\pi}{18}}(3^{1/6}e^{\frac {-9i\pi}{18}}+1)## ##=e^{\frac {4i\pi}{18}}(-i3^{1/6}+1)##
is indeed correct and needed and you also need to find $$e^\frac{2i\pi}{9} - (-\sqrt{3}e^{i\pi/6})^{(1/3)}$$ nothing else is needed , no intermediate steps involving ##e^{3i\pi}+e^{\frac{i\pi}{3}}## are needed.
 
  • #22
serves well as a detention exercise. :smile:
 
Back
Top