A How to simulate an isotope shift measurement

Malamala
Messages
342
Reaction score
28
Hello! My questions are based on this paper talking about King plot non-linearities. Assuming I have 3 isotopes and 2 transitions, I would like to know how well I should measure the transitions (i.e. what uncertainty on the transition value) in order to reach a given sensitivity for the new physics parameter. What I am thinking of doing is to generate data using equation 5 (i.e. without any new physics, assuming I know the masses and changes in charge radii), which of course if I plug in equation 9 will give me ##\alpha_{NP} = 0##. However, even if ##\alpha_{NP} = 0##, I can still use the error propagation mentioned below equation 9 to get the error on ##\alpha_{NP}##. So basically I will get ##\alpha_{NP} = 0 \pm d\alpha_{NP}## and from here I can set an upper bound on ##\alpha_{NP} < d\alpha_{NP}## at 1 sigma level. And based on the value of ##d\alpha_{NP}## I am aiming for, I can get the needed uncertainty on the transitions frequencies. However, in practice, ##\alpha_{NP}## won't be zero. It will be smaller than ##d\alpha_{NP}##, but not zero and the upper limit will be ##\alpha_{NP} + d\alpha_{NP}##, which in principle can be up to 2 times bigger than ##d\alpha_{NP}## alone. Given that I know what upper bound I aim for, how can I get the needed uncertainty on the transitions in this general case? Thank you!
 
Physics news on Phys.org
It's not clear to me why you will need a simulation to do this calculation. If you assume a non-zero value of ##\alpha_{NP}##, don't you just need to calculate the derivatives of ##\frac{\partial \alpha_{NP}}{\partial \nu_i}## for ##i = 1,2## being the two transition frequencies, and perform standard propagation of error?

Alternatively, for more accuracy, just run a simple monte carlo. Some algebra will let you derive an expression like ##\nu_2 = f(\nu_1,\alpha_{NP})## by solving the equation for ##\alpha_{NP}## for ##\nu_2##. Then introduce some measurement noise by adding uncorrelated random numbers to both ##\nu_1## and ##\nu_2##, with equal variance (assuming you measure both transitions with equal uncertainty). Then just find the scatter on your observed values of ##\alpha_{NP}##. Was that clear?
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top