MHB How to Solve a Vector Word Problem Involving Airplanes and Wind?

Gummg
Messages
2
Reaction score
0
An airplane is flying on a bearing of South 27degrees West at 485 mph. A 35 mph wind is blowing from a direction of South 72degrees East. What is the actual bearing of the plane and the ground speed of the plane? I've been stuck on this problem for so long and am going to ask for help
 
Mathematics news on Phys.org
Hello, and welcome to MHB, Gummg! (Wave)

I would write the plane's velocity vector as:

$$\vec{v}=485\left\langle \cos\left(117^{\circ}\right),-\sin\left(117^{\circ}\right) \right\rangle$$

And the wind's velocity vector as:

$$\vec{w}=35\left\langle \cos\left(162^{\circ}\right),\sin\left(162^{\circ}\right) \right\rangle$$

And so the resultant ground speed vector will be the vector sum:

$$\vec{r}=\vec{v}+\vec{w}$$

Can you proceed?
 
MarkFL said:
Hello, and welcome to MHB, Gummg! (Wave)

I would write the plane's velocity vector as:

$$\vec{v}=485\left\langle \cos\left(117^{\circ}\right),-\sin\left(117^{\circ}\right) \right\rangle$$

And the wind's velocity vector as:

$$\vec{w}=35\left\langle \cos\left(162^{\circ}\right),\sin\left(162^{\circ}\right) \right\rangle$$

And so the resultant ground speed vector will be the vector sum:

$$\vec{r}=\vec{v}+\vec{w}$$

Can you proceed?

How did you get 117 and 162 degrees?
 
Gummg said:
How did you get 117 and 162 degrees?

Make a sketch?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top