MHB How to Solve Second Order Damped Wave Equation for PDEs: A Comprehensive Guide

Click For Summary
The discussion revolves around finding comprehensive resources for solving the second order damped wave equation, specifically addressing overdamped, underdamped, and critically damped cases. Participants express frustration over existing materials that often overlook the overdamped scenario or do not meet the required complexity for partial differential equations (PDEs). A suggestion is made to refer to MIT OpenCourseWare for relevant lecture notes, but the resource is deemed insufficient for the user's needs. The inquiry highlights a gap in available educational content that thoroughly covers all damping cases in the context of PDEs. A suitable resource that encompasses all aspects of the second order damped wave equation remains sought after.
Dustinsfl
Messages
2,217
Reaction score
5
Does anyone know where I find second order damped wave equation worked where the overdamped, underdamped, and critically damped cases are all taken into account?

I found resources where they throughout the overdamped and just focus on the underdamped.
 
Mathematics news on Phys.org
dwsmith said:
Does anyone know where I find second order damped wave equation worked where the overdamped, underdamped, and critically damped cases are all taken into account?

I found resources where they throughout the overdamped and just focus on the underdamped.

Hi dwsmith, :)

Are you trying to find an article where all the cases; over-damping, under-damping and critical damping are described? Then the following lecture note from MIT OpenCourseWare may help you.

http://ocw.mit.edu/courses/mathemat...monic-oscillators/MIT18_03SCF11_s13_2text.pdf

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

Are you trying to find an article where all the cases; over-damping, under-damping and critical damping are described? Then the following lecture note from MIT OpenCourseWare may help you.

http://ocw.mit.edu/courses/mathemat...monic-oscillators/MIT18_03SCF11_s13_2text.pdf

Kind Regards,
Sudharaka.

Thanks but it isn't a high enough level example. I need one for PDEs.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
30K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K