How to Solve the Motion of a Chain Falling Off a Table?

Click For Summary
SUMMARY

The discussion centers on the dynamics of a chain falling off a table, specifically addressing the flawed assumption that the hanging portion of the chain has zero horizontal velocity. The participants propose using generalized coordinates, defining the length of the chain on the table as ##x## and the overhanging length as ##y##, and derive the Lagrangian to obtain the equation of motion: $$\ddot{y} - \frac{g}{l}y = 0$$. They emphasize the necessity of a smooth transition for momentum conservation, suggesting that the chain's shape below the table complicates the Lagrangian formulation. The conversation highlights the importance of correctly modeling the physical scenario to derive accurate equations of motion.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with generalized coordinates
  • Knowledge of potential and kinetic energy formulations
  • Basic principles of momentum conservation
NEXT STEPS
  • Explore advanced Lagrangian mechanics applications in non-linear systems
  • Research the effects of variable mass systems on motion equations
  • Study the dynamics of chains and ropes in physics
  • Investigate the role of smooth transitions in momentum conservation
USEFUL FOR

Physicists, engineering students, and anyone interested in classical mechanics, particularly those studying dynamics and Lagrangian formulations in complex systems.

etotheipi
Homework Statement
A chain of mass ##m## and length ##l## rests on a frictionless table with a fraction ##\alpha## of its length initially hanging vertically over the edge of the table. The chain is released, and we're asked to determine the length of chain beneath the surface of the table at some time ##t##.
Relevant Equations
N/A
This question came up in a lecture, and I wasn't really satisfied with how it was solved. Specifically, they assumed that the hanging part of the chain has zero horizontal velocity. What they did was essentially write down the equation ##m\ddot{x} = \frac{mg}{l} x##, which under the above assumption can be obtained either through conservation of energy, or by "resolving along the chain", or by recasting the problem as a completely vertical chain falling in a region where ##\vec{g} \neq \vec{0}## below the height of the table, but ##\vec{g} = \vec{0}## above the height of the table. But, whatever way you set up the equation, this approach clearly wrong since horizontal momentum isn't conserved under this assumption.

So when I was playing around with it, I added a new coordinate ##y## which is the horizontal distance from the edge of the table. The potential energy of the chain is then something like$$U(t) = -\int_{0}^{l} \rho x g \sqrt{ \left(\frac{\partial x}{\partial \lambda} \right)^2 + \left(\frac{ \partial y}{ \partial \lambda} \right)^2} d\lambda$$where ##(x(\lambda, t), y(\lambda, t))## is a parameterisation of the chain, with material coordinate ##\lambda \in [0, l]## and time ##t##. The kinetic energy of the whole chain is$$T(t) = \frac{1}{2} \int_{0}^{l} \rho (\dot{x}^2 + \dot{y}^2) \sqrt{ \left(\frac{ \partial x}{ \partial \lambda} \right)^2 + \left(\frac{\partial y}{ \partial \lambda} \right)^2} d\lambda$$Then maybe$$\mathcal{L} = \int_{0}^{l} \rho \left[ \frac{1}{2} (\dot{x}^2 + \dot{y}^2) + x g \right] \sqrt{ \left(\frac{\partial x}{\partial \lambda} \right)^2 + \left(\frac{ \partial y}{ \partial \lambda} \right)^2} d\lambda$$But now I get stuck, I don't know how to get an equation of motion out of that mess. I wondered if anyone could give any pointers as to how to solve for ##x(\lambda, t)## and ##y(\lambda, t)##. Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
This is a frequently misposed problem. As you observe, it ought to specify something like a smooth L-shaped tube leading down through a hole in the table, so that the horizontal momentum is converted to vertical.
The misposed version is very unlikely to be tractable.
 
  • Like
Likes   Reactions: etotheipi
It seems you have seen Lagrangians, so why not set it up the usual way. Take generalized coordinates ##x## = length of chain on table, ##y## = overhanging length and define linear mass density ##\lambda=m/l##. Then $$T=\frac{1}{2}\lambda x ~\dot x^2+\frac{1}{2}\lambda y ~\dot y^2~;~U=-\lambda y ~g~\frac{y}{2}.$$Apply the constraint ##x+y=l## and simplify to get the Lagrangian and hence the equation of motion,$$\mathcal{L}=\frac{1}{2}\lambda l \dot y^2+\frac{1}{2}\lambda gy^2 ~\Rightarrow~\ddot y-\frac{g}{l}y=0.$$
 
  • Like
Likes   Reactions: etotheipi
kuruman said:
It seems you have seen Lagrangians, so why not set it up the usual way. Take generalized coordinates ##x## = length of chain on table, ##y## = overhanging length and define linear mass density ##\lambda=m/l##. Then $$T=\frac{1}{2}\lambda x ~\dot x^2+\frac{1}{2}\lambda y ~\dot y^2~;~U=-\lambda y ~g~\frac{y}{2}.$$Apply the constraint ##x+y=l## and simplify to get the Lagrangian and hence the equation of motion,$$\mathcal{L}=\frac{1}{2}\lambda l \dot y^2+\frac{1}{2}\lambda gy^2 ~\Rightarrow~\ddot y-\frac{g}{l}y=0.$$

That's fine but this is assuming the hanging part of the chain is vertical, which can't satisfy conservation of momentum. I think the chain will have some arbitrary curved shape below the table, which leads to a more complicated Lagrangian. So far I have been unsuccessful in extracting any solutions from that Lagrangian
 
Yes, the assumption is that some feature exists that smoothly converts horizontal momentum to vertical as @haruspex noted. A normal force of variable direction from vertical to horizontal is needed at the point of contact in order to continuously provide the necessary impulse for the conversion of the momentum. If the direction changes discontinuously, momentum is lost.

My own bias is that, with problems such as this, a smooth transition with energy conservation is implicitly assumed. A "supple chain" can be imagined as going over an "ideal pulley" having a radius that approaches zero but never gets there.
 
  • Like
Likes   Reactions: etotheipi
But how do we solve it when there is no such assumption, i.e. where we just have a chain sliding off of a table? I did think that it might be useful to guess a functional form of ##(x(\lambda, t), y(\lambda, t))## and substitute this into the Lagrangian, but I'm struggling to come up with a suitable ansatz
 
Would the centrifugal effect suffice?

 
  • Wow
Likes   Reactions: Hamiltonian

Similar threads

  • · Replies 100 ·
4
Replies
100
Views
6K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
2K
Replies
8
Views
2K
Replies
64
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
1
Views
1K