A How to Solve This Differential Equation Analytically?

SantiagoCR
Messages
2
Reaction score
0
TL;DR Summary
calculate integral of a differential equation
Hello,

can someone help me to solve the following differential equation analitically:

$$\frac{2 y''}{y'} - \frac{y'}{y} = \frac{x'}{x}$$

where ##y = y(t)## and ##x = x(t)##

br

Santiago
 
Physics news on Phys.org
Hint: $$\frac{2y''}{y'}=2\log\left(y'\right)',\quad\frac{y'}{y}=\log\left(y\right)',\quad\frac{x'}{x}=\log\left(x\right)'$$
 
  • Like
  • Informative
Likes Kumail Haider, SantiagoCR, Frabjous and 1 other person
renormalize said:
Hint: $$\frac{2y''}{y'}=2\log\left(y'\right)',\quad\frac{y'}{y}=\log\left(y\right)',\quad\frac{x'}{x}=\log\left(x\right)'$$
cool, thank you very much!
 

Similar threads

Replies
12
Views
2K
Replies
8
Views
256
Replies
1
Views
2K
Replies
3
Views
3K
Replies
9
Views
2K
Replies
20
Views
4K
Back
Top