MHB How to Solve Vector Equations and Find Distances in Analytic Geometry?

AI Thread Summary
To solve the vector equations provided, the equation of the plane containing line s and parallel to line r can be expressed using their direction vectors. The distance from point P0 to line s can be determined by minimizing the distance function derived from the coordinates of line s. For finding the distance between lines r and s, the perpendicular distance from a point on line r to the plane defined in part a is calculated. Lastly, to find points P in line r and Q in line s such that the distance between them equals the distance between the two lines, the vector PQ must be perpendicular to both lines, leading to a system of equations to solve for parameters λ and t. Understanding these concepts and calculations is essential for tackling analytic geometry problems involving vector equations.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
I'm trying to help a friend but I don't remember any of this, so it'd help us both. Book recommendations are also welcomed.

Given the vector equations $$r: \begin{cases} x = 2 - \lambda, \\ y = 1 + 3 \lambda, \\ z = 1 + \lambda, \end{cases} \text{ and } s: \begin{cases} x = 1+t, \\ y = 3+4t, \\ z = 1 + 3t, \end{cases}$$

find:

[a] the equation of the plane that contains the line $s$ and it's parallel to $r$;
the distance of the point $P_0 = (2,0,0)$ to the line $s$;
[c] the distance between the lines $r$ and $s$;
[d] a point $P$ in $r$ and a point $Q$ in $s$ such that the distance between $P$ and $Q$ be equal to the distance between $r$ and $s$.

Don't necessarily need the full solution (although it'd be appreciated), hints and tips on the train of thought will be hugely valuable.
 
Mathematics news on Phys.org
Fantini said:
I'm trying to help a friend but I don't remember any of this, so it'd help us both. Book recommendations are also welcomed.

Given the vector equations $$r: \begin{cases} x = 2 - \lambda, \\ y = 1 + 3 \lambda, \\ z = 1 + \lambda, \end{cases} \text{ and } s: \begin{cases} x = 1+t, \\ y = 3+4t, \\ z = 1 + 3t, \end{cases}$$

find:

[a] the equation of the plane that contains the line $s$ and it's parallel to $r$;
the distance of the point $P_0 = (2,0,0)$ to the line $s$;
[c] the distance between the lines $r$ and $s$;
[d] a point $P$ in $r$ and a point $Q$ in $s$ such that the distance between $P$ and $Q$ be equal to the distance between $r$ and $s$.

Don't necessarily need the full solution (although it'd be appreciated), hints and tips on the train of thought will be hugely valuable.


to a)

The equation of the plane must contain the line s completely and the direction vector of r:

$\displaystyle{\langle x,y,z \rangle = \langle 1,3,1 \rangle + t \cdot \langle 1,4,3 \rangle + \lambda \cdot \langle -1,3,1 \rangle}$

That's all.

to b)

Determine the minimum of the distance from $P_0$ to any point of the straight line:

$Q \in s$. Then the distance is:

$d = |\overrightarrow{P_0,Q}| = |\vec q - \overrightarrow{p_0}|$

That means:

$d(t) = \sqrt{(-1+t)^2+(3+4t)^2+(1+3t)^2} = \sqrt{11+28t+26t^2}$

Now differentiate d, solve the equation d'(t) = 0 for t. Plug in this value into the equation of the straight line. You'll get the point Q whose distance to P is at it's minimum. Calculate the distance $\overline{P_0,Q}$.

to c)

Calculate the perpendicular distance of M(2, 1, 1) to the plane of part a). (Why?)

to d)

$\overrightarrow{PQ}$ must be perpendicular to both lines that means:

$\overrightarrow{PQ} \cdot \langle 1,4,3 \rangle = 0 ~\wedge~ \overrightarrow{PQ} \cdot \langle -1,3,1\rangle = 0$

Solve for $\lambda$ and $t$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
10
Views
2K
Replies
20
Views
2K
Replies
3
Views
3K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
2K
Back
Top