MHB How to Solve Vector Equations and Find Distances in Analytic Geometry?

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
I'm trying to help a friend but I don't remember any of this, so it'd help us both. Book recommendations are also welcomed.

Given the vector equations $$r: \begin{cases} x = 2 - \lambda, \\ y = 1 + 3 \lambda, \\ z = 1 + \lambda, \end{cases} \text{ and } s: \begin{cases} x = 1+t, \\ y = 3+4t, \\ z = 1 + 3t, \end{cases}$$

find:

[a] the equation of the plane that contains the line $s$ and it's parallel to $r$;
the distance of the point $P_0 = (2,0,0)$ to the line $s$;
[c] the distance between the lines $r$ and $s$;
[d] a point $P$ in $r$ and a point $Q$ in $s$ such that the distance between $P$ and $Q$ be equal to the distance between $r$ and $s$.

Don't necessarily need the full solution (although it'd be appreciated), hints and tips on the train of thought will be hugely valuable.
 
Mathematics news on Phys.org
Fantini said:
I'm trying to help a friend but I don't remember any of this, so it'd help us both. Book recommendations are also welcomed.

Given the vector equations $$r: \begin{cases} x = 2 - \lambda, \\ y = 1 + 3 \lambda, \\ z = 1 + \lambda, \end{cases} \text{ and } s: \begin{cases} x = 1+t, \\ y = 3+4t, \\ z = 1 + 3t, \end{cases}$$

find:

[a] the equation of the plane that contains the line $s$ and it's parallel to $r$;
the distance of the point $P_0 = (2,0,0)$ to the line $s$;
[c] the distance between the lines $r$ and $s$;
[d] a point $P$ in $r$ and a point $Q$ in $s$ such that the distance between $P$ and $Q$ be equal to the distance between $r$ and $s$.

Don't necessarily need the full solution (although it'd be appreciated), hints and tips on the train of thought will be hugely valuable.


to a)

The equation of the plane must contain the line s completely and the direction vector of r:

$\displaystyle{\langle x,y,z \rangle = \langle 1,3,1 \rangle + t \cdot \langle 1,4,3 \rangle + \lambda \cdot \langle -1,3,1 \rangle}$

That's all.

to b)

Determine the minimum of the distance from $P_0$ to any point of the straight line:

$Q \in s$. Then the distance is:

$d = |\overrightarrow{P_0,Q}| = |\vec q - \overrightarrow{p_0}|$

That means:

$d(t) = \sqrt{(-1+t)^2+(3+4t)^2+(1+3t)^2} = \sqrt{11+28t+26t^2}$

Now differentiate d, solve the equation d'(t) = 0 for t. Plug in this value into the equation of the straight line. You'll get the point Q whose distance to P is at it's minimum. Calculate the distance $\overline{P_0,Q}$.

to c)

Calculate the perpendicular distance of M(2, 1, 1) to the plane of part a). (Why?)

to d)

$\overrightarrow{PQ}$ must be perpendicular to both lines that means:

$\overrightarrow{PQ} \cdot \langle 1,4,3 \rangle = 0 ~\wedge~ \overrightarrow{PQ} \cdot \langle -1,3,1\rangle = 0$

Solve for $\lambda$ and $t$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
10
Views
2K
Replies
20
Views
2K
Replies
3
Views
3K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
2K
Back
Top