How to understand typo in MIT OCW chapter on Poynting vector?

AI Thread Summary
The discussion focuses on a potential typo in the MIT OCW chapter on the Poynting vector, specifically in the equations related to energy density and the Poynting vector. A participant highlights confusion over the transition from one equation to another, particularly regarding the factor of c. Clarification is provided that the relationship E = cB should be applied, which simplifies the equations and resolves the apparent discrepancy. The importance of accurately expressing the Poynting vector as a product of E and B is emphasized, as it reflects the energy current in electromagnetic waves. Overall, the discussion underscores the need for careful attention to detail in mathematical expressions within physics.
zenterix
Messages
774
Reaction score
84
Homework Statement
While reading a chapter about Poynting vector I reached a passage with what seems like a typo.
Relevant Equations
If it is a typo, I am still not sure how to fix it.

If it is not, then I am not sure what exactly was done in the algebra.
Here is a chapter from MIT OCW's 8.02 Electromagnetism course.

At the end of page 14 is section 13.6 "Poynting Vector". The calculations I am interested in are on page 15.

There is a passage that seems to have a typo in it. Let me try to show why despite recognizing a typo I am unsure of what the correct version would be.

Consider a plane wave passing through the infinitesimal volume element below

1716466499436.png


The total energy in the EM fields in the volume element is

$$dU=UAdx=(U_E+U_B)Adx=\left (\frac{1}{2}\epsilon_0E^2+\frac{1}{2\mu_0}B^2\right )Adx\tag{1}$$

$$=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )Adx\tag{2}$$

The rate of change of energy per unit area is

$$S=\frac{dU}{dt}\frac{1}{A}=\frac{c}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )\tag{2a}$$

where I have used the fact that the EM wave is traveling with speed ##c## and so ##dx=cdt##.

It can be shown that ##\frac{E}{B}=c=\frac{1}{\sqrt{\epsilon_0mu_0}}##, the speed of light.

The chapter then rewrites (2) but the expression seems to contain a typo. Here is the exact passage as it appears in the chapter

$$S=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )=\frac{cB^2}{\mu_0}=c\epsilon_0E^2=\frac{EB}{\mu_0}\tag{3}$$

When I rewrite (2) I get

$$S=\frac{1}{2}\left (c\epsilon_0E^2+c\frac{B^2}{\mu_0}\right )$$

$$=\frac{1}{2}\left (\epsilon_0\frac{E^3}{B}+\frac{EB}{\mu_0}\right )$$

What am I missing?
 
Last edited:
Physics news on Phys.org
Where did the added factor of c come from in your rewrite of equation (2)?
 
zenterix said:
$$S=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )Adx=\frac{cB^2}{\mu_0}=c\epsilon_0E^2=\frac{EB}{\mu_0}\tag{3}$$

First of all, you have brought along an ##A\, dx## here that should be divided by ##A\, dt## in the first expression. Try to keep away from such mistakes as they lead to confusion as displayed in post #2.

zenterix said:
When I rewrite (2) I get

$$S=\frac{1}{2}\left (c\epsilon_0E^2+c\frac{B^2}{\mu_0}\right )$$

$$=\frac{1}{2}\left (\epsilon_0\frac{E^3}{B}+\frac{EB}{\mu_0}\right )$$

What am I missing?
You are missing that ##E = cB## so take ##E^2 = c^2 B^2## in the first term and it also becomes the same as the second term - resulting in cancelling the 1/2 in front.

The reason to write it as a product of ##E## and ##B## and not any other powers is that the Poynting vector is proportional to ##\vec E \times \vec B##. The Poynting vector is more general than what they are showing in this particular passage and you cannot get it directly from this argument (although you can use the argument to verify that the Poynting vector indeed describes the expected energy current for the particular situation).
 
@phyzguy I forgot one step. It is there now, equation (2a).
 
Orodruin said:
You are missing that E=cB so take E2=c2B2 in the first term and it also becomes the same as the second term - resulting in cancelling the 1/2 in front.
Ah yes. I need to get some sleep that is what I need to do. Then maybe I won't miss such things.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top