azatkgz
- 182
- 0
It seems to that i went wrong way.
\int \frac{arcsin(e^x)dx}{e^x}
=-\frac{arcsin(e^x)}{e^x}+\int \frac{dx}{\sqrt{1-e^{2x}}}
\int \frac{dx}{\sqrt{1-e^{2x}}}=\frac{x}{\sqrt{1-e^{2x}}}+\int \frac{xe^{2x}dx}{(1-e^{2x})^{\frac{3}{2}}}
Homework Statement
\int \frac{arcsin(e^x)dx}{e^x}
The Attempt at a Solution
=-\frac{arcsin(e^x)}{e^x}+\int \frac{dx}{\sqrt{1-e^{2x}}}
\int \frac{dx}{\sqrt{1-e^{2x}}}=\frac{x}{\sqrt{1-e^{2x}}}+\int \frac{xe^{2x}dx}{(1-e^{2x})^{\frac{3}{2}}}
Last edited: