Solving an immediate indefinite integral of a composite function

It's actually a little more complicated than that: both of those are only correct up to a constant. The correct way to do it is to say that$$\int \frac{1}{\sqrt{x^2 + a^2}} \ dx = \ln(x + \sqrt{x^2 + a^2}) + C$$which tells you that$$\int \frac{1}{\sqrt{x^2 + a^2}} \ dx = \ln(x + \sqrt{x^2 + a^2}) + C_1 = \ln (a\sqrt{\frac{x^2}{a^2} + 1}) + C_1 = \ln(ax + a\sqrtf
  • #1

greg_rack

Gold Member
363
79
Homework Statement
$$\int (\frac{1}{cos^2x\cdot tan^3x})dx$$
Relevant Equations
none
That's my attempt:
$$\int (\frac{1}{cos^2x\cdot tan^3x})dx = \int (\frac{1}{cos^2x}\cdot tan^{-3}x) dx$$
Now, being ##\frac{1}{cos^2x}## the derivative of ##tanx##, the integral gets:
$$-\frac{1}{2tan^2x}+c$$
But there is something wrong... what?
 
  • #2
I'm missing what's supposed to be wrong here!
 
  • #3
Homework Statement:: $$\int (\frac{1}{cos^2x\cdot tan^3x})dx$$
Relevant Equations:: none

That's my attempt:
$$\int (\frac{1}{cos^2x\cdot tan^3x})dx = \int (\frac{1}{cos^2x}\cdot tan^{-3}x) dx$$
Now, being ##\frac{1}{cos^2x}## the derivative of ##tanx##, the integral gets:
$$-\frac{1}{2tan^2x}+c$$
But there is something wrong... what?
Convert the denominator into a fraction with only sine and cosine factors. IOW, convert the ##\tan^3## factor. The resulting expression becomes a reasonably simple problem that can be done by nothing more complicated than substitution.
 
  • #4
Convert the denominator into a fraction with only sine and cosine factors. IOW, convert the ##\tan^3## factor. The resulting expression becomes a reasonably simple problem that can be done by nothing more complicated than substitution.
Is the OP's answer wrong?
 
  • #5
Is the OP's answer wrong?
The correct answer is ##-\frac{1}{2sin^2x}+c##
 
  • #6
Is the OP's answer wrong?
I didn't go through his work very closely -- I just showed an easier way to go about it.
 
  • #7
The correct answer is ##-\frac{1}{2sin^2x}+c##
That's what you got, isn't it?
 
  • #8
Convert the denominator into a fraction with only sine and cosine factors. IOW, convert the ##\tan^3## factor. The resulting expression becomes a reasonably simple problem that can be done by nothing more complicated than substitution.
I did it, and it took me to the correct answer.
But then I found out the method explained in the OP which looks legit to me, but takes me to a wrong answer, and so I wanted to understand why
 
  • #9
That's what you got, isn't it?
I got ##-\frac{1}{2tan^2x}+c## 🤔
 
  • #10
I got ##-\frac{1}{2tan^2x}+c## 🤔
Same thing. Don't forget the constant of integration!
 
  • #11
Same thing. Don't forget the constant of integration!
What do you mean? How could ##tan^2x=sin^2x##?
 
  • #12
What do you mean? How could ##tan^2x=sin^2x##?
$$\frac{1}{tan^2x}= \frac{1}{sin^2x} + C$$ For some constant ##C##.
 
  • Like
Likes greg_rack and etotheipi
  • #13
@greg_rack it's because$$-\frac{1}{2\sin^2{x}} + c_1 = -\frac{1}{2} \csc^2 x + c_1 = -\frac{1}{2} (1+ \cot^2{x}) + c_1 = - \frac{1}{2\tan^2{x}} + c_2$$
 
  • Love
  • Informative
Likes PhDeezNutz and greg_rack
  • #15
Thanks a lot guys!
 
  • #16
This is the same sort of situation you get with the integral ##\int \sin(x)\cos(x)dx##.
You can do this in at least three different ways, of which I'll show two.
1. Let ##u = \sin(x)##, so ##du = \cos(x)dx##. The resulting antiderivative is ##-\cos^2(x) + C##.
2. Let ##u = \cos(x)##, so ##du = -\sin(x)dx##. The resulting antiderivative is ##\sin^2(x) + C##
These results look different, but because ##\sin^2(x) + \cos^2(x) = 1##, ##\sin^2(x)## and ##-\cos^2(x)## differ only by a constant, 1.

The third way involves writing the integrand as ##\sin(2x)##.
 
  • Like
Likes greg_rack and PeroK
  • #17
Thanks a lot guys!
Everyone has to learn this lesson once! Usually it's:
$$\int \sin (2x) dx = -\frac 1 2 \cos(2x) + C$$ And
$$\int \sin (2x) dx = \int 2 \sin x \cos x dx = -\cos^2 x + C$$ Which are related by the trig identity $$\cos(2x) = 2\cos^2 x - 1$$
 
  • Like
  • Love
Likes greg_rack, PhDeezNutz and etotheipi
  • #18
another non-trig one that can sometimes catch people out$$\frac{1}{a} \ln{ax} + c_1 = \int \frac{\mathrm{d}x}{ax} = \frac{1}{a} \int \frac{\mathrm{d}x}{x} = \frac{1}{a} \ln{x} + c_2$$
 
  • Like
Likes greg_rack and PeroK
  • #19
Another "favorite": In the integral ##\int\frac{1}{\sqrt{1-x^2}}dx##, depending on whether you substitute ##x=\sin(u)## or ##x=\cos(u),## you will get either ##\arcsin(x)+c_1## or ##-\arccos(x)+c_2.##
 
  • Like
Likes greg_rack, PeroK and etotheipi
  • #20
$$\int \frac{1}{\sqrt{x^2 + a^2}} \ dx = \sinh^{-1}(\frac x a) + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C_2$$
 
  • Like
  • Love
Likes greg_rack and etotheipi

Suggested for: Solving an immediate indefinite integral of a composite function

Replies
3
Views
151
Replies
9
Views
241
Replies
3
Views
584
Replies
2
Views
502
Replies
22
Views
1K
Replies
13
Views
427
Replies
4
Views
967
Back
Top