Hydrogen Atom in an electric field along ##z##

damarkk
Messages
12
Reaction score
2
Homework Statement
Hydrogen Atom, expectation value of ##L^2##, ##L_z## Perturbation Theory.
Relevant Equations
##\langle |L^2|\rangle##, ##\langle |L_z| \rangle##
There is an hydrogen atom on a electric field along ##z## ##E_z= E_{0z}## .

Consider only the states for ##n=2##. Solving the Saecular matrix for find the correction to first order for the energy and the correction to zero order for the states, we have:

##| \Psi_{211} \rangle##, ##| \Psi_{21-1} \rangle## for ##E^1_{2} = 0## that has degeneration equal to two, and

##\frac{1}{\sqrt{2}}(| \Psi_{200} \rangle ) +|\Psi_{210} \rangle)## for ##E^1_{2} = W##

##\frac{1}{\sqrt{2}}(| \Psi_{200} \rangle )- |\Psi_{210} \rangle)## for ##E^1_{2} = -W##

Where ##W## is the value of ##\langle \Psi_{200}| H'|\Psi_{210} \rangle##, ##H'=-eEz##.

Now the statement is: consider the state of the system at ##t=0## equal to ##|\Psi (0) \rangle = |\Psi_{210} \rangle##. Find the state at ##t>0## and calculate ##\langle L^2 \rangle##, ##\langle L_z \rangle##.


MY ATTEMPT



I find that ##|\Psi(t) \rangle = e^{-iE_2t/\hbar}(\cos{\omega t} |\Psi_{200} \rangle -i\sin{\omega t}|\Psi_{210} \rangle)##.

Now I compute ##\langle L_z \rangle## like that. The state of the physical system is described by eigenstates of ##L_z## and ##L^2## because I know that ##L_z |\Psi_{nlm} \rangle = m\hbar |\Psi_{nlm} \rangle## and ##L^2 |\Psi_{nlm} \rangle = \hbar^2 l(l+1) |\Psi_{nlm} \rangle##.

If this is correct, then ##\langle | L_z |\rangle = 0## and ##\langle | L^2 |\rangle = 2\hbar^2 \sin{\omega t}## where ##\omega = \frac{W}{\hbar}##.

Is this a correct answer and method?


I have also another question.
Why ##\langle L_z \rangle = 0##? Because the electric field is along ##z##, and the electron move along z axis: it doens't have any angular momentum component along z.

Why ##\langle L^2 \rangle \neq 0##? On the other hand, electron oscillates perpendicular to x and y axis and there is a component of angular momentum along it. But my question is: what is the variance of ##L_z##? In fact, ##\sigma^2 = \langle L_z^2 \rangle - \langle L_z \rangle ^2##, but if ##L_z |\Psi_{nlm} \rangle= m\hbar |\Psi_{nlm} \rangle##, then ##L_z^2 |\Psi_{nlm} \rangle= m^2\hbar^2 |\Psi_{nlm} \rangle## and is equal to zero because all the states before examinated (##|\Psi_{210} \rangle, |\Psi_{200} \rangle##) has ##m=0##. But if this is true, I can say correctly that ##\langle | L^2 |\rangle = \langle | L^2_x |\rangle+\langle | L^2_y |\rangle## and this last two are equal?
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top