B I need to check if I am right solving this integral

  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Integral solution
Click For Summary
The integral of 1/(a^2+x^2) is correctly stated as (1/a)tan^(-1)(x/a) + C. The example integral presented, ∫(5x^(3/5) - 3/(2+x^2))dx, simplifies to (25/8)x^(8/5) - (3/√2)tan^(-1)(x/√2) + C. The initial query seeks confirmation that the first statement aligns with the solution provided. Responses affirm that the calculations are indeed correct. The discussion reflects a shared interest in mathematics and a desire for validation of the work done.
mcastillo356
Gold Member
Messages
643
Reaction score
351
TL;DR
I have a list of elementary integrals, and among them one that involves arctangent; the example I am dealing with is a combination I will propose in the next discussion paragraph.
Hi, PF

1-The elementary integral is ##\displaystyle\int{\displaystyle\frac{1}{a^2+x^2}dx}=\displaystyle\frac{1}{a}\tan^{-1}\displaystyle\frac{x}{a}+C##

2-The example is ##\displaystyle\int{\Big(5x^{3/5}-\displaystyle\frac{3}{2+x^2}\Big)dx}=\displaystyle\frac{25}{8}x^{8/5}-\displaystyle\frac{3}{\sqrt{2}}\tan^{-1}\displaystyle\frac{x}{\sqrt{2}}+C##

The question is: does the first statement agree with the solution showed?; any comment?

Greetings!

PD: I post without preview.
 
Physics news on Phys.org
Yes, it does. What is your uneasiness ?
 
  • Like
Likes vanhees71 and mcastillo356
anuttarasammyak said:
Yes, it does. What is your uneasiness ?
Thanks a lot! I needed some help. I confess maths are among my favorite fields, but I am not specially good at them. I was quite sure, but still wanted to share with somebody. It was just some kind of necessity to put things in common; just ease my loneliness at this ground so interesting to me.
P&L.
Greetings!
 
  • Like
Likes vanhees71 and anuttarasammyak
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
Replies
6
Views
2K