Robert1986
- 825
- 2
micromass said:OK, the 0.999... question... again
Question for the moderators: isn't it a good idea to put an FAQ in the math forums where such things are explained? So that people who want to post on the issue, have at least heard what we think of it? If you want, I'm willing to write such an FAQ, containing basic questions like 0.999... and division by zero.
Then the question obviosuly becomes: what is 0.9999... in real life? Can you give me an example what it is?
Here's an easy proof that 1=0.999...
Let x=0.999...
Then 10x=9.999...
Then 10x-x=9.999... - 0.999...=9
Then 9x=9
Then x=1
Of course, this isn't really a proof, it's merely an indication why this should be true. The real proof that 1=0.999... can only be given with the explicit construction of the real numbers, i.e. when working with Dedekind sets or Cauchy fundamental sequences.
The truth is actually that we've CHOSEN 1 to be equal to 0.999... If you want, you can choose it another way, but then there's a lot of arithmetic that won't hold. So in order to keep the nice laws of arithmetic, we have to define 1=0.999... You may not like it, but it's much more beautiful this way.
This paragraph is actually personal opinion, you may find many mathematicians who disagree. But you won't find any mathematician who says that 1=0.999... isn't true.
Ahhh, so someone has taken this approach this thread, my bad.
Anyway, could you explain why the argument you gave isn't really a proof?
