(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

q: show that for an ideal hcp structure the c/a ratio is equal to (8/3)^(1/2) = 1.633

this question has come up before in the forum but still it has not fully answered:

Kouros Khamoushi

Dec30-05, 12:27 AM

This is the mathematical calculation ^ means to the power of

c/2 = a/2 Then a^2 /2 = c^2/2

a^2 + a^2

----- = (4R)^2

2

2a^2+a^2

-------------- = 16 R^2

2

3a^2 = 2 *16 R^2

a^2 = 2*16 R^2

-----

3

a = 2* square root of 16 divided by square root of 3

a = 8 / 3 = 1.6329 R

Kouros Khamoushi

Jan26-06, 06:48 PM

The assumptions above are roughly correct, but we have to take into the considerations the Pythagorean Theorem.

The Pythagorean Theorem states: b^2=a^2+c^2. as well as c/2 or half of hexagonal crystal structure as well as the cosine for 30 degree triangles generated by the hole in Hexagonal closed packed.

So we write:

c/a half of this c/2.

Cos 30 degree

skyav

Feb9-09, 03:49 PM

Dear all,

i have tried. the last post by Kouros Khamoushi almost worked...

how ever i do not understand where some of the steps....

1. c/2 = a/2??? how?

2. 3a^2 = 2 *16 R^2???? where in the world did the factor of 3 come from on the LHS of this eqn.

You are prob correct... however please clarify the steps as i am totally baffled.

ps. inha: what shape of slice do u mean? also i hope it is from hexagonal lattice?

Kind regards.

**Physics Forums - The Fusion of Science and Community**

# Ideal hcp lattice, ratio c/a = 1.633 proof

Have something to add?

- Similar discussions for: Ideal hcp lattice, ratio c/a = 1.633 proof

Loading...

**Physics Forums - The Fusion of Science and Community**