If a and b are unit vectors....

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the dot product of the expression (2a-b)·(a+3b) given that a and b are unit vectors and |a + b| = sqrt(2). Participants explore the implications of these conditions and the steps involved in arriving at the answer.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant asks for the value of the dot product (2a-b)·(a+3b) and suggests -1 as a possible answer.
  • Another participant provides a detailed calculation showing that (2a-b)·(a+3b) simplifies to 5(a·b) - 1, using the fact that a and b are unit vectors.
  • It is noted that since |a + b| = sqrt(2), squaring both sides leads to the conclusion that a·b = 0.
  • Further clarification is sought regarding the transition from 2(a·b) = 0 to a·b = 0, with one participant questioning the relevance of the factor of 2.
  • Another participant explains that the zero product property indicates that if 2(a·b) = 0, then a·b must be 0, allowing for the substitution in the earlier expression.

Areas of Agreement / Disagreement

Participants generally agree on the calculations leading to the conclusion that the dot product equals -1, but there is some uncertainty regarding the reasoning behind the simplification of 2(a·b) = 0 to a·b = 0.

Contextual Notes

The discussion includes assumptions about the properties of dot products and unit vectors, and the implications of the given conditions on the calculations. There are unresolved questions about the reasoning behind certain steps in the mathematical derivation.

Raerin
Messages
46
Reaction score
0
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.
 
Physics news on Phys.org
Re: If a nd b are unit vecotrs...

Raerin said:
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.

Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.
 
Re: If a nd b are unit vecotrs...

Chris L T521 said:
Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.

I don't understand how 2a . b = 0 becomes a . b = 0. Does the 2 become irrelevant if the dot product is 0?

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?
 
Re: If a nd b are unit vecotrs...

Raerin said:
I don't understand how 2a . b = 0 becomes a . b = 0.

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?

Since $\mathbf{a}\cdot\mathbf{b}$ is a scalar, then by the zero product property $2\mathbf{a}\cdot \mathbf{b} = 0$ implies that either $2=0$ (which is absurd) or $\mathbf{a}\cdot\mathbf{b}=0$ (which is the correct choice). With that result, you can now substitute zero in for $\mathbf{a}\cdot\mathbf{b}$ in the simplified form of $(2\mathbf{a}-\mathbf{b})\cdot(a+3\mathbf{b})$ to get $5\mathbf{a}\cdot\mathbf{b} - 1 = 5(0) - 1 = -1$.

I hope this clarifies things! (Bigsmile)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
5K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
26
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K