MHB If a and b are unit vectors....

AI Thread Summary
If vectors a and b are unit vectors and |a + b| = sqrt(2), the dot product (2a - b) · (a + 3b) simplifies to -1. This result arises because the condition |a + b| = sqrt(2) implies that a and b are orthogonal, leading to a · b = 0. The calculation shows that (2a - b) · (a + 3b) equals 5(a · b) - 1, which confirms the answer is indeed -1. The discussion clarifies how the zero product property applies in this context. Thus, the conclusion that the dot product equals -1 is validated.
Raerin
Messages
46
Reaction score
0
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.
 
Mathematics news on Phys.org
Re: If a nd b are unit vecotrs...

Raerin said:
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.

Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.
 
Re: If a nd b are unit vecotrs...

Chris L T521 said:
Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.

I don't understand how 2a . b = 0 becomes a . b = 0. Does the 2 become irrelevant if the dot product is 0?

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?
 
Re: If a nd b are unit vecotrs...

Raerin said:
I don't understand how 2a . b = 0 becomes a . b = 0.

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?

Since $\mathbf{a}\cdot\mathbf{b}$ is a scalar, then by the zero product property $2\mathbf{a}\cdot \mathbf{b} = 0$ implies that either $2=0$ (which is absurd) or $\mathbf{a}\cdot\mathbf{b}=0$ (which is the correct choice). With that result, you can now substitute zero in for $\mathbf{a}\cdot\mathbf{b}$ in the simplified form of $(2\mathbf{a}-\mathbf{b})\cdot(a+3\mathbf{b})$ to get $5\mathbf{a}\cdot\mathbf{b} - 1 = 5(0) - 1 = -1$.

I hope this clarifies things! (Bigsmile)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top