MHB If a and b are unit vectors....

AI Thread Summary
If vectors a and b are unit vectors and |a + b| = sqrt(2), the dot product (2a - b) · (a + 3b) simplifies to -1. This result arises because the condition |a + b| = sqrt(2) implies that a and b are orthogonal, leading to a · b = 0. The calculation shows that (2a - b) · (a + 3b) equals 5(a · b) - 1, which confirms the answer is indeed -1. The discussion clarifies how the zero product property applies in this context. Thus, the conclusion that the dot product equals -1 is validated.
Raerin
Messages
46
Reaction score
0
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.
 
Mathematics news on Phys.org
Re: If a nd b are unit vecotrs...

Raerin said:
If a and b are unit vectors and |a + b| = sqrt(2). What is the value (dot product) of (2a-b).(a+3b)?

Is the answer -1 by any chance? If not...

I know how to find the dot product and find the magnitude and add vectors, etc. but I have never came across this a question before. I am very unclear on how to do it.

Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.
 
Re: If a nd b are unit vecotrs...

Chris L T521 said:
Note that

\[\begin{aligned} (2\mathbf{a}-\mathbf{b}) \cdot (\mathbf{a}+3\mathbf{b}) &= 2\mathbf{a}\cdot\mathbf{a} +6\mathbf{a}\cdot\mathbf{b} - \mathbf{a}\cdot\mathbf{b} -3\mathbf{b}\cdot\mathbf{b} \\ &= 2\|\mathbf{a}\|^2 +5\mathbf{a}\cdot\mathbf{b} - 3\|\mathbf{b}\|^2\\ &= 5\mathbf{a}\cdot\mathbf{b} - 1\quad\text{since $\mathbf{a}$ and $\mathbf{b}$ are unit vectors}\end{aligned}\]

Since $\|\mathbf{a}+\mathbf{b}\| = \sqrt{2}$, squaring both sides and expanding via dot product leaves you with
\[\|\mathbf{a}\|^2+ 2\mathbf{a}\cdot\mathbf{b} + \|\mathbf{b}\|^2 = 2 \implies 2\mathbf{a}\cdot\mathbf{b} = 0\implies \mathbf{a}\cdot\mathbf{b} = 0\]

Therefore, we now have that

\[(2\mathbf{a}-\mathbf{b})\cdot (\mathbf{a}+3\mathbf{b}) = 5\mathbf{a}\cdot\mathbf{b} - 1 = -1\]

So yes, your answer is correct.

I don't understand how 2a . b = 0 becomes a . b = 0. Does the 2 become irrelevant if the dot product is 0?

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?
 
Re: If a nd b are unit vecotrs...

Raerin said:
I don't understand how 2a . b = 0 becomes a . b = 0.

Also, if a . b = 0 then 5a . b -1 be 5(0) - 1 and that's how you get -1?

Since $\mathbf{a}\cdot\mathbf{b}$ is a scalar, then by the zero product property $2\mathbf{a}\cdot \mathbf{b} = 0$ implies that either $2=0$ (which is absurd) or $\mathbf{a}\cdot\mathbf{b}=0$ (which is the correct choice). With that result, you can now substitute zero in for $\mathbf{a}\cdot\mathbf{b}$ in the simplified form of $(2\mathbf{a}-\mathbf{b})\cdot(a+3\mathbf{b})$ to get $5\mathbf{a}\cdot\mathbf{b} - 1 = 5(0) - 1 = -1$.

I hope this clarifies things! (Bigsmile)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top