If H is a subgroup, then H is subgroup of normalizer

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Subgroup
Click For Summary
If H is a subgroup of G, then it is shown that H is also a subgroup of the normalizer N_G(H). The proof involves demonstrating that for any element h in H, the conjugation hHh^{-1} remains within H, confirming that H is contained in N_G(H). The discussion highlights that N_G(H) is defined as the set of elements in G that normalize H, implying that H is normal in N_G(H). Furthermore, it is emphasized that N_G(H) is the largest subgroup with this property, as any element that normalizes H must already belong to N_G(H). The conversation also touches on the distinction between normal subgroups and ordinary subgroups, clarifying the implications of their definitions.
Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Show that if ##H## is a subgroup of ##G##, then ##H \le N_G (H)##

Homework Equations

The Attempt at a Solution


Essentially, we need to show that ##H \subseteq N_G (H)##; since they are both groups under the same binary operation the fact that they are subgroups will result. So let ##h \in H##. We want to show that ##h \in N_G (H)##, i.e. we want to show that ##hHh^{-1} = H##. But since the map ##\sigma_h (x) = hxh^{-1}## is automorphism an and thus a permutation from ##H## to ##H##, the set ##hHh^{-1}## is just a permuted version of ##H##, and so by set theory ##hHh^{-1} = H##, and ##h \in N_G (H)##.
 
Physics news on Phys.org
Isn't the point to show that ##H \trianglelefteq N_G(H)## or even better, that ##N_G(H)## is the largest subgroup with this property? For ##H \leq N_G(H)## you only need to write ##hHh^{-1} \subseteq H## which is trivial for (sub-)groups, no conjugation or automorphism needed, just the group operation.
 
  • Like
Likes Mr Davis 97
fresh_42 said:
Isn't the point to show that ##H \trianglelefteq N_G(H)## or even better, that ##N_G(H)## is the largest subgroup with this property? For ##H \leq N_G(H)## you only need to write ##hHh^{-1} \subseteq H## which is trivial for (sub-)groups, no conjugation or automorphism needed, just the group operation.
I'm just reading the problem word for word. I haven't learned about normal subgroups yet, so maybe that's why is seems trivial. But, one question. Why does ##hHh^{-1} \subseteq H## imply that ##H \le N_G (H)##?
 
Last edited:
##N_G(H)=\{\,g\in G\,:\,gHg^{-1}\subseteq H\,\}## per definition and this implies automatically that it contains ##H## because ##H## is a group.

A normal subgroup ##N## is one which has the property that ##gNg^{-1} \subseteq N## for all ##g\in G\,.## The clue is that normal subgroups are exactly those for which there can be defined a group structure on the set of equivalence classes ##\{\,[g]\,:\,[g]=gN\; , \;g \in G\,\}##. With an ordinary subgroup this cannot be done, with a normal subgroup it can (well definition is what fails with ordinary subgroups). The definition of ##N_G(H)## also shows that ##H## is normal in ##N_G(H)## - per construction, and this is why it is called normaizer of ##H## in ##G##. It's also the largest such subgroup for otherwise an element ##gNg^{-1}## would already be in ##N_G(H)##.
 
  • Like
Likes Mr Davis 97
fresh_42 said:
##N_G(H)=\{\,g\in G\,:\,gHg^{-1}\subseteq H\,\}## per definition and this implies automatically that it contains ##H## because ##H## is a group.

A normal subgroup ##N## is one which has the property that ##gNg^{-1} \subseteq N## for all ##g\in G\,.## The clue is that normal subgroups are exactly those for which there can be defined a group structure on the set of equivalence classes ##\{\,[g]\,:\,[g]=gN\; , \;g \in G\,\}##. With an ordinary subgroup this cannot be done, with a normal subgroup it can (well definition is what fails with ordinary subgroups). The definition of ##N_G(H)## also shows that ##H## is normal in ##N_G(H)## - per construction, and this is why it is called normaizer of ##H## in ##G##. It's also the largest such subgroup for otherwise an element ##gNg^{-1}## would already be in ##N_G(H)##.
Ah I see. Also, one thing, Dummit and Foote defines ##N_G (A) = \{ g \in G ~|~ gAg^{-1} = A \}##. Not sure why it is equality and not subset.
 
Mr Davis 97 said:
Ah I see. Also, one thing, Dummit and Foote defines ##N_G (A) = \{ g \in G ~|~ gAg^{-1} = A \}##. Not sure why it is equality and not subset.
This doesn't make a difference: ##gNg^{-1} \subseteq N \Longrightarrow N \subseteq g^{-1}Ng \subseteq N## as the relation is true for ##g## as well as ##g^{-1}##.
 
  • Like
Likes Mr Davis 97
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K