MHB If $x^{3/2}+y^{3/2}=r^{3/2}$, then $u=r$ and $v=r-x$.

Click For Summary
The discussion revolves around transforming the integral over the region defined by the inequality \(x^{3/2} + y^{3/2} \leq \alpha^{3/2}\) into a triangular region in the \(uv\)-plane. Participants suggest defining \(u\) as \((x^{3/2} + y^{3/2})^{2/3}\) and explore possible definitions for \(v\) to achieve a straight-line transformation. The region's boundaries and the need for \(v\) to correspond to a linear relationship are emphasized, particularly the line connecting points \((0,2)\) and \((2,0)\). The conversation includes considerations of how to generalize the transformation while maintaining the integrity of the region's shape. Ultimately, the goal is to establish clear relationships between \(u\), \(v\), \(x\), and \(y\) for effective integration.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $D$ be the space in the first quadrant of the $xy$-plane that is defined by the inequality $x^{\frac{3}{2}}+y^{\frac{3}{2}} \leq \alpha^{\frac{3}{2}}$ with $\alpha>0$. I want to transform $\iint_D f(x,y) dx dy$ to an integral on the triangle $E$ of the $uv$-plane that is defined by the inequalities $0 \leq u \leq \alpha$ and $0 \leq v \leq \alpha-u$.
Which new variables do we define here? (Wondering) Do we maybe define the following variables?
$$u=\left (x^{\frac{3}{2}}+y^{\frac{3}{2}}\right )^{\frac{2}{3}}$$ Then we would get $0\leq \left (x^{\frac{3}{2}}+y^{\frac{3}{2}}\right )^{\frac{2}{3}}\leq \left (a^{\frac{3}{2}}\right )^{\frac{2}{3}} \Rightarrow 0\leq u\leq a$.

But what about $v$ ? (Wondering)
 
Physics news on Phys.org
Hi mathmari! (Smile)

What does the region look like?
Can we draw it?
Perhaps we can see then how best to transform it into a triangle. (Thinking)

You current idea for u corresponds more or less with a polar length, which would suggest that v could be an angle. That may not be the most natural fit though, and seems unlikely to lead to an upper bound of $\alpha -u$. (Nerd)
 
I like Serena said:
What does the region look like?
Can we draw it?
Perhaps we can see then how best to transform it into a triangle. (Thinking)

The region is in the following form:

[DESMOS=-5,5,-5,5]x^{\frac{3}{2}}+y^{\frac{3}{2}}\le a^{\frac{3}{2}};a=2[/DESMOS] Do we not have to change only the curve that goes through the points $(0,2)$ and $(2,0)$ to get a triangle? (Wondering)
 
mathmari said:
The region is in the following form:

Do we not have to change only the curve that goes through the points $(0,2)$ and $(2,0)$ to get a triangle?

Indeed. Hmmm, could we for instance define $u=x$, and try to find a $v$ such that the curve becomes a straight line? (Wondering)
 
I like Serena said:
Indeed. Hmmm, could we for instance define $u=x$, and try to find a $v$ such that the curve becomes a straight line? (Wondering)

Does the curve has to become a straight line that passes through the points $(2,0)$ and $(0,2)$ ? (Wondering)
 
mathmari said:
Does the curve has to become a straight line that passes through the points $(2,0)$ and $(0,2)$?
That is what I would propose we try.
But there is no 'have to' to it.
 
I like Serena said:
That is what I would propose we try.
But there is no 'have to' to it.

So, does it holds that $v=-u+2$ ? (Wondering)
 
mathmari said:
So, does it holds that $v=-u+2$ ? (Wondering)
That only holds on 1 of the 3 bounding curves (assuming we have $\alpha=2$).
But we can start with that bounding curve, and then try to generalize. (Thinking)
 
I like Serena said:
That only holds on 1 of the 3 bounding curves (assuming we have $\alpha=2$).
But we can start with that bounding curve, and then try to generalize. (Thinking)

Will the triangle be bounded by the lines $v=-x+a$, $u=0$, $v=0$ ? (Wondering)
 
  • #10
mathmari said:
Will the triangle be bounded by the lines $v=-x+a$, $u=0$, $v=0$ ? (Wondering)

Yes.
Now suppose we have a point (x,y) inside D with, say, an $r$ such that $x^{3/2}+y^{3/2}=r^{3/2}$ and $0\le r \le \alpha$,
What would $u$ and $v$ be then in terms of $x$ and $y$? (Wondering)