Image of a f with a local minima at all points is countable.

Click For Summary
The discussion centers on proving that the image of a function f, which has a local minimum at every point in its domain, is countable. Participants explore the implications of local minima and the density of rational numbers to establish a mapping between the image of f and the rationals. There is debate over the nature of f, including whether it can be constant or must vary, with suggestions that it could be a piecewise function or a step function. The conversation also touches on the constraints of boundedness and the characteristics of functions with local minima. Ultimately, the participants aim to clarify the properties of f to solidify the proof of countability.
Terrell
Messages
316
Reaction score
26

Homework Statement


Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}## (This means that for each ##x \in \Bbb{R}## there is an ##\epsilon \gt 0## where if ##\vert x-t\vert \lt \epsilon## then ##f(x) \leq f(t)##.). Then the image of ##f## is countable.

Homework Equations


N/A

The Attempt at a Solution


Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}##. Consider the arbitrary interval ##(r- \epsilon, r+ \epsilon)##. Since if ##q \in \Bbb{Q}## is in ##(r - \epsilon, r+ \epsilon)##, then ##(r - \delta, r + \delta) \subset (r - \epsilon, r + \epsilon)## such that ##\vert q-r\vert=\delta##. Hence we can define a mapping ##g:f(\Bbb{R}) \to \Bbb{Q}## as ##g(f(r))=\delta##. Note that we can assign a unique correspondence between elements in ##f(\Bbb{R})## and ##\Bbb{Q}## due to the density property; which states ##\forall x,y\in\Bbb{R} \exists q' \in \Bbb{Q}, x \lt q' \lt y##. Since ##\Bbb{Q}## is countable then so is ##f(\Bbb{R})##.
 
Physics news on Phys.org
Terrell said:

Homework Statement


Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}## (This means that for each ##x \in \Bbb{R}## there is an ##\epsilon \gt 0## where if ##\vert x-t\vert \lt \epsilon## then ##f(x) \leq f(t)##.). Then the image of ##f## is countable.

Homework Equations


N/A

The Attempt at a Solution


Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}##. Consider the arbitrary interval ##(r- \epsilon, r+ \epsilon)##. Since if ##q \in \Bbb{Q}## is in ##(r - \epsilon, r+ \epsilon)##, then ##(r - \delta, r + \delta) \subset (r - \epsilon, r + \epsilon)## such that ##\vert q-r\vert=\delta##. Hence we can define a mapping ##g:f(\Bbb{R}) \to \Bbb{Q}## as ##g(f(r))=\delta##. Note that we can assign a unique correspondence between elements in ##f(\Bbb{R})## and ##\Bbb{Q}## due to the density property; which states ##\forall x,y\in\Bbb{R} \exists q' \in \Bbb{Q}, x \lt q' \lt y##. Since ##\Bbb{Q}## is countable then so is ##f(\Bbb{R})##.

I don't see how your proof works. To take an example. Let ##r = 0## and ##\epsilon = 1##.

We can find ##q = 1/2##, say, and then ##g(f(0)) = q = 1/2##.

But, we could also choose ##q = 1/4## here.

And, if we take ##r = 0## and ##\epsilon = 0.1##, we would need a different ##q## again.
 
  • Like
Likes Terrell
PeroK said:
But, we could also choose q=1/4q=1/4q = 1/4 here.
Yeah I know. However, it is not what I meant. I am having difficulty writing it precisely. But, I think I've found another way. For each ##x \in (r-\epsilon, r+\epsilon)##, find an interval within ##(r-\epsilon, r+\epsilon)## with rational endpoints containing ##x## and assign either one of the rational endpoints to ##x##. Would this work?
 
Last edited:
Terrell said:
Yeah I know. However, it is not what I meant. I am having difficulty writing it, precisely. But, I think I've found another way. For each ##x \in (r-\epsilon, r+\epsilon)##, find an interval within ##(r-\epsilon, r+\epsilon)## with rational endpoints containing ##x## and assign either one of the rational endpoints to ##x##. Would this work?

I don't see how. I don't know this problem, but here are my thoughts:

Why isn't ##f## simply the constant function?

How does ##f## change from one value to another?
 
Last edited:
PeroK said:
Why isn't fff simply the constant function?
I think the author of the problem wants us to show for any such function ##f## and not just for a constant function.
PeroK said:
How does fff change from one value to another?
It wasn't specified in the book. Although, it was also hinted that we should avoid assuming additional properties like differentiability and continuity or anything like that.

He(Steven Krantz) also hinted that he had a 10 page solution when was a student. While a one line solution was provided by Michael Spivak.
 
Terrell said:
assign either one of the rational endpoints to x
I meant, assigned to ##f(x)## in particular.
 
Terrell said:
I think the author of the problem wants us to show for any such function ##f## and not just for a constant function.

It wasn't specified in the book. Although, it was also hinted that we should avoid assuming additional properties like differentiability and continuity or anything like that.

He(Steven Krantz) also hinted that he had a 10 page solution when was a student. While a one line solution was provided by Michael Spivak.

I didn't expect to be so comprehensively misunderstood.

Well, what sort of function do you think that ##f## could be? What would an ##f## with those properties look like?
 
PeroK said:
I didn't expect to be so comprehensively misunderstood.
Sorry for the misunderstanding.
PeroK said:
Well, what sort of function do you think that fff could be? What would an fff with those properties look like?
The way I see it, graphically, ##f## would be an infinite number of dots in ##\Bbb{R}^2##; I think it's called a piece-wise function. I think that ##f## cannot be continuous. Is this a correct interpretation to begin with? Thanks!
 
Terrell said:
graphically, fff would be an infinite number of dots in R2
Moreover, the dots must move upward of ##\Bbb{R}^2## to infinity. I think, this must be the case because for every interval ##(r-\epsilon, r+\epsilon)##, ##f(r) \leq f(x')## such that ##x' \in (r-\epsilon, r+\epsilon)##.
 
  • #10
Terrell said:
Sorry for the misunderstanding.

The way I see it, graphically, ##f## would be an infinite number of dots in ##\Bbb{R}^2##; I think it's called a piece-wise function. I think that ##f## cannot be continuous. Is this a correct interpretation to begin with? Thanks!

No, it could be constant. It could be a step function (although there is a constraint on the steps - can you see what that is?). It could have isolated points.

Must ##f## be increasing?

Another idea: if the image is uncountable, then it must be uncountable in at least one of the intervals ##[n, n+1]##. That might help.

Or, perhaps your original idea to use the density of ##\mathbb{Q}## might help.
 
  • Like
Likes Terrell
  • #11
Terrell said:
Moreover, the dots must move upward of ##\Bbb{R}^2## to infinity. I think, this must be the case because for every interval ##(r-\epsilon, r+\epsilon)##, ##f(r) \leq f(x')## such that ##x' \in (r-\epsilon, r+\epsilon)##.

This is not true. ##f## could be bounded.
 
  • #12
PeroK said:
(although there is a constraint on the steps - can you see what that is?). It could have isolated points.
I don't see this, yet. Don't know if I will, I'll try.
PeroK said:
Must fff be increasing?
Nope.
 
  • #13
PeroK said:
This is not true. fff could be bounded.
Only when ##f## is a constant?
 
  • #14
Terrell said:
Only when ##f## is a constant?

You could have a step function with a finite number of steps. Or, an infinite number of steps, as long as the sequence of step values is bounded.
 
  • Like
Likes Terrell
  • #15
PeroK said:
You could have a step function with a finite number of steps. Or, an infinite number of steps, as long as the sequence of step values is bounded.
Got it. Although, bounded-ness does not affect this problem. Correct?
 
  • #16
PeroK said:
Another idea: if the image is uncountable, then it must be uncountable in at least one of the intervals [n,n+1][n,n+1][n, n+1]. That might help.
I haven't thought of this equivalent statement. This is nice.
 
  • #17
Terrell said:
I haven't thought of this equivalent statement. This is nice.

Okay. I might have time to look for a solution myself today. But, if I don't, at least you have some more ideas.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
9
Views
3K
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K