tom.stoer said:
I don't eqate them. I only wanted to say that physics fails to be a an axiomatic system for several different reasons currently.
Well, I don't want to be unnecessarily argumentative, but it's very clear from your #99 that you did equate them.
The recent string of comments on quantum mechanics versus classical mechanics shows that we have a lot of people here who don't understand the relationship between formal logic and the rest of mathematics. Please take a look again at my #10, S.Daedalus's #33, and Coin's #57. These three posts pretty much encapsulate the reasons why Godel's theorems have no relevance to physics.
Any theory of physics can be expressed in a formalism that is equiconsistent to real analysis, and it doesn't matter whether the theory is quantum or classical. For example, complex analysis is equiconsistent to real analysis, because you can build a model of complex analysis using the reals. Since the Schrodinger equation can be written using complex analysis, the formalism you need for the Schrodinger equation is equiconsistent with real analysis. That means that to a logician, there is no difference between the mathematical foundations needed for quantum mechanics and Newtonian mechanics.
S.Daedalus's #33 gives a good example of how you can't equate a physical theory to the underlying foundation of mathematics that it needs. Conway's game of life can be described by an evolution rule, which plays the same role as, say, the Schrodinger equation or the Einstein field equations. There are certain things that you can't prove *about* the game, but you can always determine the evolution of the system from one state to another. This means that you can always predict the outcome of experiments. If you're developing a theory of this game, is the theory just the evolution equation, or is it that plus statements that you want to prove about the game? Well, basically the theory includes whatever people have figured out about the game. It doesn't have a strict boundary where you can say that everything inside the boundary is part of the theory and everything outside it is not part of the theory. The theory is whatever physicists have agreed is interesting and related to the topic. This is why my objection to com.stoer's conflation of physical theories with axiomatic systems is not just a quibble. It's a crucial point.
Coin's #57 explains why, even if you express a TOE in terms of a certain mathematical foundation, that doesn't mean that Godel's theorems say anything of physical interest about the TOE, e.g., that certain interesting physical questions are undecidable. They don't even say that interesting questions in the theory's underlying mathematical foundation (such as real analysis) are undecidable.