Chalnoth said:
Let me put it this way: if it is possible to describe reality as a set of distinct but interrelated physical systems, then it is also possible to describe reality as one physical system. If, in one description of reality, some physical law changes with time, then in another description the physical laws remain unchanged while the apparent change is explained by the dynamics of the unchanging theory.
Basically, if there is a way that reality behaves, then there is a way to accurately describe that behavior. Because of this, it must be possible to narrow it all down to one single self-consistent structure (though that structure may be extremely complex).
I understand what you say but I actually I still disagree.
My point is that not all changes are decidable. You assume that all changes are predictable in the deductive sense, and thus can be expected. I arguet that the physical limits of encoding and computing expectations makes this not possible.
Chalnoth said:
Let me put it this way: if it is possible to describe reality as a set of distinct but interrelated physical systems, then it is also possible to describe reality as one physical system.
This is true, but I'm trying to explicitly acknowledge that any inference, and expectation is encoded by a physical system (observer), which means that any expectation only contains statements about it's own observable neigbourhood, and moreover only a PART of it, as all information about the environment can not possibly be encoded by an finite observer.
Chalnoth said:
If, in one description of reality, some physical law changes with time, then in another description the physical laws remain unchanged while the apparent change is explained by the dynamics of the unchanging theory.
Again, I partially agree with this. What you describe is a part of what happens also in my view, but you assume that there can be a localized expectation of ALL changes of the future. I don't think so. What you say only makes perfect sense when we study small subsystems where the experiment can be repeated over and over again, and that we have capacity to store all data.
What you say, is effectively true for particle physics because there this subsystem condition applies. But it fails for cosmological models, and it would also fail for an inside view of particle physics where one tries to "scale" the theory down to say a priton. This is IMO then also becomes related to the lack of unification.
Some parts of my arguments are also in these talks
-
http://pirsa.org/08100049/ "On the reality of time and the evolution of laws" by Smolin, except I think Smolin is not radical enough
In here, Smoling talks about EVOLVING law in the darwinian sene, and a guy in the audience thinks just like you that - OK, if the law evolves they obviously isn't here is a meta law the describes how? - Smolin answers he doesn't know, but I think the answer must be no. And it's because such law would not be decidable in general.
But it's still true, in a constrained sense that what is undecidable to one observer, can be decidable to another (usually more complex) observer. This is how it works in particle physics. The observer is essentially the entire lab fram, and it's extremely complex nad effecticely "monitors" the entire environment of the volume where things happen.
So I think your suggest is partly right, but it can never be complete. And I think this is an important point.
-
http://pirsa.org/10050053/, "Laws and time in cosmology", by Unger
These guys talk about cosmo laws, but if you combine this with the search for a theory of how laws scale (like a replacement of RG) then this gets implications also for partile physics, but there the implication isn't that laws evolve from our perspective (they don't, at least not effectively so) but the evolution is relative to the particles, and understanding this might help the unification program. (or so I think, but it's just my opinon of course)
Chalnoth said:
Because of this, it must be possible to narrow it all down to one single self-consistent structure (though that structure may be extremely complex).
Ok this is a good point. It's actually because it's soo extremely complex that it, at the end of the day in fact ISN'T possible for a finite observer. ALSO, what you suggest seems to only work in retrospect. Ie. "record history" if it fits into your memory, and call the recorded pattern a law. If the future violates that pattern, record the further future and "extend the law". I think it should be clear why such approach is bound to be sterile.
/Fredrik