Implicit Differentiation to find equation of a tangent line

Click For Summary

Discussion Overview

The discussion revolves around using implicit differentiation to find the equation of the tangent line to the curve defined by the equation \(x^{2/3} + y^{2/3} = 4\) at the point \((-3\sqrt{3}, 1)\). Participants are addressing a specific problem related to implicit differentiation and the correct formulation of the tangent line equation.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant expresses confusion about their answer being marked incorrect and seeks help in understanding why.
  • Another participant provides the derivative of the function using implicit differentiation, stating \(y' = -\frac{y^{1/3}}{x^{1/3}}\) and suggests evaluating it at the given point.
  • A later reply points out that the original response did not represent an equation of a line and emphasizes the need to evaluate the derivative at the specified point.
  • Further clarification is provided regarding the correct formulation of the tangent line equation, with a suggestion to use \(y - 1 = 3^{-1/2}(x + 3\sqrt{3})\).

Areas of Agreement / Disagreement

Participants generally agree on the method of implicit differentiation and the need to evaluate the derivative at the given point, but there is no consensus on the original participant's answer or the correctness of the tangent line equation provided.

Contextual Notes

There are limitations in the original response regarding the formulation of the tangent line equation, as it lacks an equality sign and does not evaluate the derivative at the specified point. The discussion also reflects uncertainty about the correct representation of the tangent line.

hannahSUU
Messages
4
Reaction score
0
I need urgent help. I have this question:
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
\begin{equation}
{x}^{2/3}+{y}^{2/3}=4
\\
\left(-3\sqrt{3}, 1\right)\end{equation}

(astroid)
[DESMOS=-10,10,-10,10]x^{\frac{2}{3}}+y^{\frac{2}{3}}=4[/DESMOS]

My answer is
\begin{equation}
-\frac{\sqrt[3]{y}}{\sqrt[3]{x}}\left(x+3\sqrt{3}\right)+1
\end{equation}
which is marked as incorrect, but I can't figure out why.

Any help is appreciated (heart)

EDIT: I clearly do not know how to use Latex. Working on fixing it now
EDIT 2: Fixed
 
Last edited:
Physics news on Phys.org
Look at your function again.
[math]x^{2/3} + y^{2/3} = 4[/math]

Take your derivative.
[math]\frac{2}{3} x^{-1/3} + \frac{2}{3} y^{-1/3} ~ y' = 0[/math]

Now solve for y'.

-Dan
 
hannahSUU said:
I need urgent help. I have this question:
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
\begin{equation}
{x}^{2/3}+{y}^{2/3}=4
\\
\left(-3\sqrt{3}, 1\right)\end{equation}

(astroid)My answer is
\begin{equation}
-\frac{\sqrt[3]{y}}{\sqrt[3]{x}}\left(x+3\sqrt{3}\right)+1
\end{equation}
which is marked as incorrect, but I can't figure out why.

Any help is appreciated (heart)

EDIT: I clearly do not know how to use Latex. Working on fixing it now
EDIT 2: Fixed
I thought I had responded to this before. Perhaps it was on another math site?

One reason this was marked as incorrect was that the problem asked for "the equation of the tangent line" and what you have is not an equation! There is no "=".

But even if you intended "y= " in front of that, it is not the equation of a line. You need to evaluate that derivative at the given point, not just leave it in terms of "x" and "y".

From x^{2/3}+ y^{2/3}= 4, (2/3)x^{-1/3}+ (2/3)y^{-1/3}y'= 0 so y'= -\frac{y^{1/3}}{x^{1/3}}. Now, specifically, at (-3\sqrt{3}, 1) that becomes y'(-3\sqrt{3})= -\frac{1^{1/3}}{(-3\sqrt{3})^{1/3}}. Now, the tangent line is given by y- 1= \left(-\frac{1^{1/3}}{(-3\sqrt{3})^{1/3}}\right)(x- 3\sqrt{3})= 3^{-1/2}(x- 3\sqrt{3}).
 
That should be $ y - 1 = 3^{-1/2}(x + 3\sqrt3)$ :)
 
Thanks.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K