Implicit Differentiation: two different answers found. Please explain.

  • Thread starter benhou
  • Start date
  • #1
123
1

Homework Statement



Could anyone explain that I got two different answers for this question: find [tex]dy/dx[/tex] of [tex]\frac{x}{x+y}-\frac{y}{x}=4[/tex]

Homework Equations





The Attempt at a Solution



1. using quotient rule:
[tex]\frac{x+y-(1+dy/dx)x}{(x+y)^{2}}-\frac{x\frac{dy}{dx}-y}{x^{2}}=0[/tex]
[tex]\frac{y}{(x+y)^{2}}-\frac{x}{(x+y)^{2}}\frac{dy}{dx}+\frac{y}{x^{2}}-\frac{1}{x}\frac{dy}{dx}=0[/tex]
[tex](\frac{x}{(x+y)^{2}}+\frac{1}{x})\frac{dy}{dx}=\frac{y}{(x+y)^{2}}+\frac{y}{x^{2}}[/tex]
[tex]x(\frac{1}{(x+y)^{2}}+\frac{1}{x^{2}})\frac{dy}{dx}=y(\frac{1}{(x+y)^{2}}+\frac{1}{x^{2}})[/tex]
[tex]\frac{dy}{dx}=y/x[/tex]

2. simplify using common denominator before taking derivative:
[tex]\frac{x^{2}}{x^{2}+xy}-\frac{xy+y^{2}}{x^{2}+xy}=4[/tex]
[tex]x^{2}-xy-y^{2}=4x^{2}+4xy[/tex]
[tex]-y^{2}=3x^{2}+5xy[/tex]
[tex]-2y\frac{dy}{dx}=6x+5y+5x\frac{dy}{dx}[/tex]
[tex]\frac{dy}{dx}=-\frac{6x+5y}{2y+5x}[/tex]
 

Answers and Replies

  • #2
Dick
Science Advisor
Homework Helper
26,260
619
They aren't really different. Pick a point on the original curve like y=1, x=(sqrt(13)-5)/6. Substitute it into both of your expressions for dy/dx. You'll get the same thing. Coincidence?
 
  • #3
Dick
Science Advisor
Homework Helper
26,260
619
Or just try it with a braindead simple example. Take y/x=1. Do it one way and you get dy/dx=y/x, do it the other way and you get dy/dx=1. Which one is right?
 
  • #4
123
1
I have tried a few examples, and they all came out to be the same. Wow, I am so amazed that two equations that look so different can be the same thing.
I also tried to let the two equations equal:
1. [tex]
\frac{dy}{dx}=y/x
[/tex]
2. [tex]
\frac{dy}{dx}=-\frac{6x+5y}{2y+5x}
[/tex]
Simplifying it, I got
[tex]y/x= -\frac{6x+5y}{2y+5x}[/tex]
[tex]2y^{2}+5xy=-6x^{2}-5xy[/tex]
[tex]6x^{2}+10xy+2y^{2}=0[/tex]
[tex]3x^{2}+5xy+y^{2}=0[/tex]

Which is the same as the original equation, shown in the process using the second method, the one says "simplifying using common denominator".
 
  • #5
123
1
Ya, thank you so much. What I had always been doing were trying disprove the first method, the one saying "using quotient rule", because of the step following this:
[tex]
x(\frac{1}{(x+y)^{2}}+\frac{1}{x^{2}})\frac{dy}{dx }=y(\frac{1}{(x+y)^{2}}+\frac{1}{x^{2}})
[/tex]
 
  • #6
Dick
Science Advisor
Homework Helper
26,260
619
Just to be clear. y/x and -(6x+5y)/(2y+5x) aren't the same expression. But you can prove they are equal if you combine them with x/(x+y)-y/x=4. Did you see post 3? It's a really simple example of the same thing.
 
  • #7
123
1
Ya, I know they are not the same thing. They are just related to the original equation.

By post three, you mean this?
Or just try it with a braindead simple example. Take y/x=1. Do it one way and you get dy/dx=y/x, do it the other way and you get dy/dx=1. Which one is right?
I didn't understand it. Were you trying to tell me that all three of these equations relate to each other?
 
  • #8
Dick
Science Advisor
Homework Helper
26,260
619
Ok, (y/x)=1. (y/x)'=y'/x-y/x^2=0. Solve for y'=y/x. Or reduce the original equation and get y=x. So y'=1. y'=1 and y'=y/x LOOK different. Until you remember the original equation was y/x=1. It's the same sort of difference you are looking at. Just a lot more obvious.
 
  • #9
123
1
I was confused about what you meant by "do it". I thought you wanted me to plug that equation into the ones I was doing. Now it's clear. Thanks a lot.
 

Related Threads on Implicit Differentiation: two different answers found. Please explain.

Replies
3
Views
1K
Replies
4
Views
1K
Replies
4
Views
1K
  • Last Post
Replies
6
Views
963
Replies
11
Views
15K
  • Last Post
Replies
5
Views
596
  • Last Post
Replies
5
Views
241
Replies
6
Views
2K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
5
Views
1K
Top