- #1
wel
Gold Member
- 36
- 0
Find the fixed points of the implicit Euler scheme
\begin{equation} y_{n+1}-y_{n}= hf(t_{n+1},y_{n+1})
\end{equation}
when applied to the differential equation [itex]y'=y(1-y)[/itex] and investigate their stability?
=>
implicit Euler scheme
\begin{equation} y_{n+1}-y_{n}= hf(t_{n+1},y_{n+1})
\end{equation}
$y'=y(1-y)$
\begin{equation} y_{n+1}=y_{n}+hy_{n+1}(1-y_{n+1})
\end{equation}
\begin{equation} y_{n+1}=y_{n}+hy_{n+1}-hy^2_{n+1}
\end{equation}
For fixed points
[itex]y_{n+1}=y_{n}[/itex]
\begin{equation} y_{n}=y_{n}+hy_{n}-hy^2_{n}
\end{equation}
[itex]y_{n}=0[/itex] or [itex]1[/itex]
I got problem with stability but this is what I have done
[itex]y_{n}= \alpha +\epsilon^n[/itex], [itex]y_{n+1}= \alpha +\epsilon^{n+1}[/itex],
\begin{equation} \alpha +\epsilon^{n+1}= \alpha +\epsilon^n + h (\alpha +\epsilon^{n+1})(1-\alpha -\epsilon^{n+1}) \end{equation}
\begin{equation} \epsilon^{n+1}= \epsilon^n + h (\alpha +\epsilon^{n+1})(1-\alpha -\epsilon^{n+1}) \end{equation}
When $y_{n}=0=\alpha$
\begin{equation} \epsilon^{n+1}= \epsilon^n + h \epsilon^{n+1}(1-\epsilon^{n+1}) \end{equation}
I don't what to say or do after that to determine the stability.
When [itex]y_{n}=1=\alpha[/itex]
\begin{equation} \epsilon^{n+1}= \epsilon^n - h \epsilon^{n+1}(1+\epsilon^{n+1}) \end{equation}
same again what can say about with my answer to investigate the stability.
\begin{equation} y_{n+1}-y_{n}= hf(t_{n+1},y_{n+1})
\end{equation}
when applied to the differential equation [itex]y'=y(1-y)[/itex] and investigate their stability?
=>
implicit Euler scheme
\begin{equation} y_{n+1}-y_{n}= hf(t_{n+1},y_{n+1})
\end{equation}
$y'=y(1-y)$
\begin{equation} y_{n+1}=y_{n}+hy_{n+1}(1-y_{n+1})
\end{equation}
\begin{equation} y_{n+1}=y_{n}+hy_{n+1}-hy^2_{n+1}
\end{equation}
For fixed points
[itex]y_{n+1}=y_{n}[/itex]
\begin{equation} y_{n}=y_{n}+hy_{n}-hy^2_{n}
\end{equation}
[itex]y_{n}=0[/itex] or [itex]1[/itex]
I got problem with stability but this is what I have done
[itex]y_{n}= \alpha +\epsilon^n[/itex], [itex]y_{n+1}= \alpha +\epsilon^{n+1}[/itex],
\begin{equation} \alpha +\epsilon^{n+1}= \alpha +\epsilon^n + h (\alpha +\epsilon^{n+1})(1-\alpha -\epsilon^{n+1}) \end{equation}
\begin{equation} \epsilon^{n+1}= \epsilon^n + h (\alpha +\epsilon^{n+1})(1-\alpha -\epsilon^{n+1}) \end{equation}
When $y_{n}=0=\alpha$
\begin{equation} \epsilon^{n+1}= \epsilon^n + h \epsilon^{n+1}(1-\epsilon^{n+1}) \end{equation}
I don't what to say or do after that to determine the stability.
When [itex]y_{n}=1=\alpha[/itex]
\begin{equation} \epsilon^{n+1}= \epsilon^n - h \epsilon^{n+1}(1+\epsilon^{n+1}) \end{equation}
same again what can say about with my answer to investigate the stability.