MHB Improper integral and L'Hôpital's rule

rayne1
Messages
32
Reaction score
0
integral from 2 to infinity dx/(x^2+2x-3)

I got this as the result:
lim x to infinity (1/4)(ln|x-1|-ln|x+1|+ln|5|)

Then I got (1/4)(infinity - infinity + ln|5|) so do I need to use l'hopital's rule for ln|x-1|-ln|x+1| or would the final answer be ln|5|/4? If not, I am unsure of how to l'hopital's rule for this kind of question.
 
Physics news on Phys.org
We are given to evaluate:

$$I=\int_2^{\infty}\frac{1}{x^2+2x-3}\,dx$$

As this is an improper integral, we should write:

$$I=\lim_{t\to\infty}\left(\int_2^{t}\frac{1}{x^2+2x-3}\,dx\right)$$

Factoring the denominator of the integrand and applying partial fraction decomposition, we obtain:

$$I=\frac{1}{4}\lim_{t\to\infty}\left(\int_2^{t}\frac{1}{x-1}-\frac{1}{x+3}\,dx\right)$$

Applying the FTOC, we get:

$$I=\frac{1}{4}\lim_{t\to\infty}\left(\left[\ln\left|\frac{x-1}{x+3}\right|\right]_2^{t}\right)$$

$$I=\frac{1}{4}\lim_{t\to\infty}\left(\ln\left|\frac{t-1}{t+3}\right|+\ln(5)\right)=\frac{1}{4}\left(\ln\left(\lim_{t\to\infty}\left(\frac{t-1}{t+3}\right)\right)+\ln(5)\right)=\frac{\ln(5)}{4}$$

Your solution is correct, and there is no need to use L'Hôpital's rule here.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top