1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Improper integral comparison test

  1. Jan 2, 2015 #1
    [tex]\int_{0}^{\infty} \frac{x^2 dx}{x^5+1}[/tex]
    The question asks whether this function diverges or converges.
    I have tried to do some comparisons with x^2/(x^6+1), and x^2/(x^3+1) but it didn't end up with something good.

    Then I decided to compare it with [tex] \frac{x^2}{x^4+1}[/tex]
    Since this function converges and is greater than the given function on [tex](1,\infty )[/tex] it proves that the given function converges too. But it almost takes one page to integrate this function so I thought there must be an easier way to handle this. What other function can I think of rather than this?
     
  2. jcsd
  3. Jan 2, 2015 #2
    I think I've found it.

    [tex]\frac{x^2}{x^5}[/tex] is greater than the given function. Can I do comparison test between these two on (1, infinity)? Then I add the rectangle formed by x = 0 y =0 and x= 1 y=1/2 which comes from the given function. Sum of these two areas must be finite and greater than x^2/(x^5+1), so it proves asked expression is convergent, doesn't it?
     
  4. Jan 2, 2015 #3

    Mark44

    Staff: Mentor

    This is the most obvious one to use for comparison. It should have been your first choice, but it takes some practice to be able to notice things like this right away. Note that x2/x5 is the same as 1/x3.
    I don't see anything wrong with that. Your original integrand is defined on the interval [0, 1], so it's easy enough to evaluate the integral using those limits. Then you can both integrals on [1, ∞).
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Improper integral comparison test
Loading...