(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Use a comparison to determine if the improper integral converges or diverges. If the integral converges, give an upper bound for the value.

Integral of d(theta) / (theta^3 + theta)^1/2 from 1 to infinity

2. Relevant equations

N/A

3. The attempt at a solution

I'm not sure which function would be a good comparison to use to determine convergence or divergence. Earlier in the assignment, I ran across an equation that was dx/(9 - x^2)^1/2 which was arcsin(x/3), and since this is +, it'd be arccos - however that was with x^2 and this is theta^3, I'm not sure if that would be a direct comparison or not.

Any help would be appreciated, thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Improper Integral using Comparison to determine Convergence/Divergence

**Physics Forums | Science Articles, Homework Help, Discussion**