Impulse and perfectly inelastic collision between 2 points

Click For Summary

Homework Help Overview

This discussion revolves around a problem involving impulse and a perfectly inelastic collision between two bodies, focusing on the conservation of linear momentum and energy considerations. The participants explore the implications of an impulse applied to one mass prior to the collision and its effect on momentum during the collision.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the need to find the components of the velocity after the collision and question whether the impulse affects the momentum during the collision. There is an exploration of energy balance and the relationship between initial height and maximum height after the collision.

Discussion Status

Some participants have clarified the role of the impulse applied to mass A and its relevance to the momentum change during the collision. There is ongoing exploration of how to calculate the maximum height and the energy lost in the collision, with various interpretations being considered.

Contextual Notes

Participants note that the impulse is applied only to mass A before the collision, and there is a discussion about the negligible effect of gravity during the brief collision duration. Additionally, the initial height is emphasized as a factor in calculating the maximum height after the collision.

Thermofox
Messages
144
Reaction score
26
Homework Statement
A body, of mass ## m_A = 2kg##, is initially at rest on the ground. ##A## is then subjected to a vertical instantaneous impulse of magnitude ##J = 10 Ns##. When ##A## has a velocity of ##v_A = 5m/s##, the body is struck in a perfectly inelastic collision by the body B. Knowing that ##m_B=0.2Kg## and that ##B## has a constant horizontal velocity, ##v_B= 5m/s##, determine:
1) ##h##
2) The energy lost in the collision
3) ##\theta##
4) The maximum height of ##A+B## after the collision
Relevant Equations
##\Delta P = I##
Screenshot 2024-07-02 231501.png
The main thing about this problem is to find the components of the velocity, ##v_{A+B}##. To do that you have to use the conservation of linear momentum of the collision. In this case, since there is an impulse, I should have ##\Delta P = J##. But the impulse is given prior to the collision. Does this mean that ##\Delta P = 0## in the collision? That's the thing I don't understand.

After I figure that out, I know how to finish the problem:
1)I Already can determine ##h## by writing an energy balance from when ##A## is on the ground to the moment right before the collision with ##B##;
2) Energy lost = ##|\Delta E_{kinetic}|## ;
3) Once I have the components of ##v_{A+B}##, I can determine ##\theta## with trigonometry;
4) Max height, ## h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}##.
 
Physics news on Phys.org
Thermofox said:
Homework Statement: A body, of mass ## m_A = 2kg##, is initially at rest on the ground. ##A## is then subjected to a vertical instantaneous impulse of magnitude ##J = 10 Ns##. When ##A## has a velocity of ##v_A = 5m/s##, the body is struck in a perfectly inelastic collision by the body B. Knowing that ##m_B=0.2Kg## and that ##B## has a constant horizontal velocity, ##v_B= 5m/s##, determine:
1) ##h##
2) The energy lost in the collision
3) ##\theta##
4) The maximum height of ##A+B## after the collision
Relevant Equations: ##\Delta P = I##

View attachment 347751The main thing about this problem is to find the components of the velocity, ##v_{A+B}##. To do that you have to use the conservation of linear momentum of the collision. In this case, since there is an impulse, I should have ##\Delta P = J##. But the impulse is given prior to the collision. Does this mean that ##\Delta P = 0## in the collision? That's the thing I don't understand.

After I figure that out, I know how to finish the problem:
1)I Already can determine ##h## by writing an energy balance from when ##A## is on the ground to the moment right before the collision with ##B##;
2) Energy lost = ##|\Delta E_{kinetic}|## ;
3) Once I have the components of ##v_{A+B}##, I can determine ##\theta## with trigonometry;
4) Max height, ## h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}##.
The impulse ##J## they are talking about is applied only to mass ##m_A## (before the collision).

So yeah, if you are saying gravity (impulse) is negligibly small over the very short collision duration (##A## impacting ##B##) then for the collision ##\Delta P = 0 ##.
 
  • Like
Likes   Reactions: Thermofox
erobz said:
The impulse ##J## they are talking about is applied only to mass ##m_A## (before the collision).

So yeah, if you are saying gravity is negligibly small over the very short collision duration (##A## impacting ##B##) then for the collision ##\Delta P = 0 ##.
Ok thanks for the clarification.
 
Thermofox said:
Ok thanks for the clarification.
Also, don't forget that you are starting at ##h##, when finding ##h_{max}##.
 
  • Like
Likes   Reactions: Thermofox
erobz said:
Also, don't forget that you are starting at ##h##, when finding ##h_{max}##.
Right, ##h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}## is valid only when ##h_{\text{initial}}=0##.
##\Rightarrow h_{max}= h_{\text{initial}} + \frac {v_{A+B}^2 (\sin\theta)^2} {2g} ##
 
  • Like
Likes   Reactions: erobz

Similar threads

  • · Replies 1 ·
Replies
1
Views
985
Replies
10
Views
3K
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K