Impulse and perfectly inelastic collision between 2 points

AI Thread Summary
The discussion focuses on calculating the components of velocity, ##v_{A+B}##, using the conservation of linear momentum in a perfectly inelastic collision. The impulse, ##J = 10 Ns##, is applied to mass ##m_A## before the collision, leading to confusion about whether ##\Delta P = 0## during the collision. It is clarified that gravity's effect is negligible during the brief collision, supporting the notion that ##\Delta P = 0##. After determining the initial height ##h## and energy lost, the maximum height after the collision can be calculated using the formula ##h_{max} = h_{initial} + \frac{v_{A+B}^2 (\sin\theta)^2}{2g}##. Understanding these principles is crucial for solving the problem effectively.
Thermofox
Messages
144
Reaction score
26
Homework Statement
A body, of mass ## m_A = 2kg##, is initially at rest on the ground. ##A## is then subjected to a vertical instantaneous impulse of magnitude ##J = 10 Ns##. When ##A## has a velocity of ##v_A = 5m/s##, the body is struck in a perfectly inelastic collision by the body B. Knowing that ##m_B=0.2Kg## and that ##B## has a constant horizontal velocity, ##v_B= 5m/s##, determine:
1) ##h##
2) The energy lost in the collision
3) ##\theta##
4) The maximum height of ##A+B## after the collision
Relevant Equations
##\Delta P = I##
Screenshot 2024-07-02 231501.png
The main thing about this problem is to find the components of the velocity, ##v_{A+B}##. To do that you have to use the conservation of linear momentum of the collision. In this case, since there is an impulse, I should have ##\Delta P = J##. But the impulse is given prior to the collision. Does this mean that ##\Delta P = 0## in the collision? That's the thing I don't understand.

After I figure that out, I know how to finish the problem:
1)I Already can determine ##h## by writing an energy balance from when ##A## is on the ground to the moment right before the collision with ##B##;
2) Energy lost = ##|\Delta E_{kinetic}|## ;
3) Once I have the components of ##v_{A+B}##, I can determine ##\theta## with trigonometry;
4) Max height, ## h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}##.
 
Physics news on Phys.org
Thermofox said:
Homework Statement: A body, of mass ## m_A = 2kg##, is initially at rest on the ground. ##A## is then subjected to a vertical instantaneous impulse of magnitude ##J = 10 Ns##. When ##A## has a velocity of ##v_A = 5m/s##, the body is struck in a perfectly inelastic collision by the body B. Knowing that ##m_B=0.2Kg## and that ##B## has a constant horizontal velocity, ##v_B= 5m/s##, determine:
1) ##h##
2) The energy lost in the collision
3) ##\theta##
4) The maximum height of ##A+B## after the collision
Relevant Equations: ##\Delta P = I##

View attachment 347751The main thing about this problem is to find the components of the velocity, ##v_{A+B}##. To do that you have to use the conservation of linear momentum of the collision. In this case, since there is an impulse, I should have ##\Delta P = J##. But the impulse is given prior to the collision. Does this mean that ##\Delta P = 0## in the collision? That's the thing I don't understand.

After I figure that out, I know how to finish the problem:
1)I Already can determine ##h## by writing an energy balance from when ##A## is on the ground to the moment right before the collision with ##B##;
2) Energy lost = ##|\Delta E_{kinetic}|## ;
3) Once I have the components of ##v_{A+B}##, I can determine ##\theta## with trigonometry;
4) Max height, ## h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}##.
The impulse ##J## they are talking about is applied only to mass ##m_A## (before the collision).

So yeah, if you are saying gravity (impulse) is negligibly small over the very short collision duration (##A## impacting ##B##) then for the collision ##\Delta P = 0 ##.
 
erobz said:
The impulse ##J## they are talking about is applied only to mass ##m_A## (before the collision).

So yeah, if you are saying gravity is negligibly small over the very short collision duration (##A## impacting ##B##) then for the collision ##\Delta P = 0 ##.
Ok thanks for the clarification.
 
Thermofox said:
Ok thanks for the clarification.
Also, don't forget that you are starting at ##h##, when finding ##h_{max}##.
 
erobz said:
Also, don't forget that you are starting at ##h##, when finding ##h_{max}##.
Right, ##h_{max}= \frac {v_{A+B}^2 (\sin\theta)^2} {2g}## is valid only when ##h_{\text{initial}}=0##.
##\Rightarrow h_{max}= h_{\text{initial}} + \frac {v_{A+B}^2 (\sin\theta)^2} {2g} ##
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top