I just want to clarify this. I have had trouble before with including the function in the integral when I am trying to find volume. I have come to think that this is necessarily only when it is a double integral. But I had a specific question I posted earlier and I feel like somebody told me that the function is never included.(adsbygoogle = window.adsbygoogle || []).push({});

More specifically, if I have z = f(x,y) and I want to integrate over some domain in the xy plane then I want to say the integral would look like [itex]\int[/itex][itex]\int[/itex] f(x,y) dx dy. Similarly, if it was in polar coords, f(r,theta) then I would have [itex]\int[/itex][itex]\int[/itex] f(r,theta)r dr d theta. I think this is true since the integral is "adding" little boxes of volume z dx dz or z r dr dtheta respectively.

However, if it is a triple integral, whether in spherical, cylindrical or Cartesian, the function is not included in the integral because dV is the little units of volume. Is this correct?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# In integrating to find a volume when is the function included?

**Physics Forums | Science Articles, Homework Help, Discussion**