In Mechanical Wave v = w/k. EM wave w/k = c. How Equated ?

Click For Summary
The discussion centers on the relationship between the velocity of transverse mechanical waves and electromagnetic (EM) waves, specifically how the ratio ω/k corresponds to the speed of light, c. Participants explore the connection between the amplitudes of electric (E) and magnetic (B) fields and their propagation speed, questioning whether the leading edges of these fields travel at c. It is clarified that the velocity of propagation is not influenced by the amplitude of the wave, despite some confusion regarding the interpretation of the ratio Em/Bm. The mathematical derivation using Maxwell's equations is referenced to demonstrate the relationship between E and B fields in a plane wave. Ultimately, the discussion seeks to clarify the connection between wave speed and field amplitudes in the context of electromagnetic theory.
morrobay
Gold Member
Messages
1,130
Reaction score
1,788
With ω/k = 2π/T / 2π/λ = velocity for both transverse mechanical waves and EM waves.
I can understand velocity as distance over time in mechanical wave. But how is the ratio Em/Bm = ω/k = c.
That is the maximum amplitudes of the E and B fields in the y and z planes corresponding to c in x direction ?
Is it correct to say that the " leading edges" of the E and B fields in y and z planes are at c ?

http://www.santarosa.edu/~lwillia2/42/WaveEquationDerivation.pdf
 
Last edited:
Physics news on Phys.org
morrobay said:
With ω/k = 2π/T / 2π/λ = velocity for both transverse mechanical waves and EM waves.
I can understand velocity as distance over time in mechanical wave. But how is the ratio Em/Bm = ω/k = c.
That is the maximum amplitudes of the E and B fields in the y and z planes corresponding to c in x direction ?
Is it correct to say that the " leading edges" of the E and B fields in y and z planes are at c ?

http://www.santarosa.edu/~lwillia2/42/WaveEquationDerivation.pdf

Too late edit : With dE/dx and t constant, dB/dt and x constant --> ∂E/∂x = - ∂B/∂t ... then to ω/k = Em/Bm = c. Does answer the change in x/change in t question. Again still not sure how this is related to amplitudes ?
 
morrobay said:
Too late edit : With dE/dx and t constant, dB/dt and x constant --> ∂E/∂x = - ∂B/∂t ... then to ω/k = Em/Bm = c. Does answer the change in x/change in t question. Again still not sure how this is related to amplitudes ?
The velocity of propagation for a transverse wave is not related to the amplitude of the wave at all.
 
SteamKing said:
The velocity of propagation for a transverse wave is not related to the amplitude of the wave at all.
Well that's my question , with ω/k = Emax/Bmax = c. (from Halliday-Resnick) The propagation velocity is related to amplitude. Unless I am misinterpreting Em/Bm
 
This is from a page in the text : kEm cos (kx-ωt) = ωBm cos (kx-ωt).
ω/k = Em/Bm = c
Thus the speed of wave c is the ratio of the amplitude of the electric and magnetic components of the wave.
So can someone show how Em/Bm = ω/k ?
 
morrobay said:
So can someone show how Em/Bm = ω/k ?

Consider the following plane wave as an example: $$\vec E = \hat x E_m \cos (kz - \omega t) \\ \vec B = \hat y B_m \cos (kz - \omega t) $$ where ##\hat x## and ##\hat y## are unit vectors in the x and y directions. That is, ##\vec E## and ##\vec B## are in the x and y directions respectively, and the wave propagates in the z direction. Substitute these into the third Maxwell equation in free space: $$\vec \nabla \times \vec E = - \frac {\partial \vec B}{\partial t}$$ and you will get the desired result.

[added: I originally had ##E_m## instead of ##B_m## in my equation for ##\vec B## above. I've fixed this.]
 
Last edited:
I'm working through something and want to make sure I understand the physics. In a system with three wave components at 120° phase separation, the total energy calculation depends on how we treat them: If coherent (add amplitudes first, then square): E = (A₁ + A₂ + A₃)² = 0 If independent (square each, then add): E = A₁² + A₂² + A₃² = 3/2 = constant In three-phase electrical systems, we treat the phases as independent — total power is sum of individual powers. In light interference...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 7 ·
Replies
7
Views
1K