Incident Angle Limitation Derivation in Optical Fibre

  • Thread starter Eats Dirt
  • Start date
1. The problem statement, all variables and given/known data
derive the angle of limitation sinθ=[(n2^2-n3^2)^1/2]/n1

n1 is the air out side of the fibre
n2 is inside of the fibre
n3 is the fibre wall

2. Relevant equations

Snells Law:

n1sinθ1=n2sinθ2



3. The attempt at a solution

I'm pretty stuck and don't really know where to go after getting the angles from geometry. I have pi/2-θ2 for the angle of reflection off of the optical wall. So I put this angle into Snells Law then just kind of get stuck.
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
30,628
4,388
1. The problem statement, all variables and given/known data
derive the angle of limitation sinθ=[(n2^2-n3^2)^1/2]/n1

n1 is the air out side of the fibre
n2 is inside of the fibre
n3 is the fibre wall
First (for those of us unfamiliar with this topic), please describe the path of the light rays of interest. Better still, provide a diagram.
Snells Law:

n1sinθ1=n2sinθ2
Not quite.
When you have that corrected, use it at both the point of entry and at the point of internal reflection. (What is the minimum angle of incidence to get internal reflection? )
Connect the two using cos2 = 1 - sin2.
 
First (for those of us unfamiliar with this topic), please describe the path of the light rays of interest. Better still, provide a diagram.


Snells Law: n1Sin(θi)=n2Sin(θt) where t is the transmitted and i is the incident ray and their angles are measured relative to the normal of the surface.
 

Attachments

Ok I think I've got it,

[tex]\sin\theta[/tex]

[tex]n_1\sin\theta_i=n_2\sin\theta_t[/tex]

Known that the critical angle is [tex]\arcsin(\frac{n_2}{n_1})[/tex]
[tex]\arcsin(n3/n2)=\frac{\pi}{2}-\theta_2[/tex]
[tex]\theta_2=\frac{pi}{2}-\arcsin(\frac{n3}{n2})[/tex]

[tex]n_1\sin(\theta_i)=n_2\sin(\theta_2)\\

n_1\sin(\theta_i)=n_2\sin(\frac{pi}{2}-\arcsin(\frac{n_3}{n_2}))\\[/tex]

use the identity [tex]\sin(A-B)=sinAcosB-cosAsinB[/tex]

[tex]

n_1\sin(\theta_i)=n_2\sin(\frac{pi}{2})\cos(\arcsin(\frac{n3}{n2}))[/tex]
use the identity [tex] \cos(\arcsin(x))=(1-x^2)^\frac{1}{2}\\
n_1\sin(\theta_i)=n_2(1-(\frac{n_3}{n_2})^2)^\frac{1}{2}\\

\sin(\theta_i)=\frac{n_2}{n_1}(1-(\frac{n_3}{n_2})^2)^\frac{1}{2}\\

\sin(\theta_i)=\frac{1}{n_1}((n_2)^2-(n_3)^2)^\frac{1}{2}[/tex]

Thanks for your help haruspex!!
 
Last edited:

adjacent

Gold Member
1,538
63
Converted to LaTeX for easier reading :wink:
##n_1\sin(\theta_i)=n_2\sin(\theta_t)##

Known that the critical angle is ##\arcsin(\frac{n_2}{n_1})##[general case]
so ##\arcsin(\frac{n_3}{n_2})=\frac{\pi}{2}-\theta_2##
##\theta_2=\frac{pi}{2}-\arcsin(n_3/n_2)##

##n_1\sin(\theta_i)=n_2\sin(\theta_2)##
##n_1\sin(\theta_i)=n_2\sin(\frac{\pi}{2}-\arcsin(\frac{n_3}{n_2}))##
use the identity ##\sin(A-B)####=####sinAcosB-cosAsinB##

##n_1\sin(\theta_i)=n_2\sin\frac{\pi}{2}\cos(\arcsin(\frac{n_3}{n_2})##
use the identity ##\cos(\arcsin(x))=(1-x^2)^\frac{1}{2}##
##n_1\sin(\theta_i)=n_2(1-(\frac{n_3}{n_2})^2)##
##\sin(\theta_i)=\frac{n_2}{n_1}*(1-(\frac{n_3}{n_2})^2)##

##\sin(\theta_i)=\frac{1}{n_1}*((n_2)^2-(n_3)^2)^\frac{1}{2}##
 
Last edited:
Converted to LaTeX for easier reading :wink:
I edited my earlier message to convert it to latex :) took me a while as I have only used it a few times prior.
 

Want to reply to this thread?

"Incident Angle Limitation Derivation in Optical Fibre" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Latest threads

Top