MHB Increasing Function on an Interval .... Browder, Proposition 3.7 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am currently reading Chapter 3: Continuous Functions on Intervals and am currently focused on Section 3.1 Limits and Continuity ... ...

I need some help in understanding the proof of Proposition 3.7 ...Proposition 3.7 and its proof read as follows:View attachment 9509
In the above proof by Andrew Browder we read the following:

" ... ... Clearly $$A\leq f(t) \leq B$$ since $$f$$ is increasing ... ... "
Can someone demonstrate, formally and rigorously that $$A\leq f(t) \leq B$$ ... ...Note: Although it seems highly plausible, given the definitions of $$A$$ and $$B$$ and given also that $$f$$ is increasing, that $$A\leq f(t) \leq B$$ .. I am unable to prove it rigorously ... Hope someone can help ...

Peter
 

Attachments

  • Browder - Proposition 3.7 ... .png
    Browder - Proposition 3.7 ... .png
    22.8 KB · Views: 131
Physics news on Phys.org
Hi Peter,

Since $f$ is increasing we know $x_{1}<x_{2}\,\Longrightarrow\, f(x_{1})\leq f(x_{2}).$ This means that $f(t)$ is an upper bound for the set $\{f(s)\,\vert\, s < t\}$ and a lower bound for $\{f(s)\,\vert\, t<s\}$. Does that help resolve the issue?
 
GJA said:
Hi Peter,

Since $f$ is increasing we know $x_{1}<x_{2}\,\Longrightarrow\, f(x_{1})\leq f(x_{2}).$ This means that $f(t)$ is an upper bound for the set $\{f(s)\,\vert\, s < t\}$ and a lower bound for $\{f(s)\,\vert\, t<s\}$. Does that help resolve the issue?
Thanks so so much for the help GJA ...

Reflecting on what you have said ...

Beginning to suspect that I'm overthinking this issue ...

Thanks again for the help ...

Peter
 
Hi Peter,

Always happy to help in any way that I can. I had a tough time too when it came to understanding supremums and infimums. The words "least upper" and "greatest lower" don't hit the ear right initially.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top