MHB Increasing Function on an Interval .... Browder, Proposition 3.7 .... ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am currently reading Chapter 3: Continuous Functions on Intervals and am currently focused on Section 3.1 Limits and Continuity ... ...

I need some help in understanding the proof of Proposition 3.7 ...Proposition 3.7 and its proof read as follows:View attachment 9509
In the above proof by Andrew Browder we read the following:

" ... ... Clearly $$A\leq f(t) \leq B$$ since $$f$$ is increasing ... ... "
Can someone demonstrate, formally and rigorously that $$A\leq f(t) \leq B$$ ... ...Note: Although it seems highly plausible, given the definitions of $$A$$ and $$B$$ and given also that $$f$$ is increasing, that $$A\leq f(t) \leq B$$ .. I am unable to prove it rigorously ... Hope someone can help ...

Peter
 

Attachments

  • Browder - Proposition 3.7 ... .png
    Browder - Proposition 3.7 ... .png
    22.8 KB · Views: 137
Physics news on Phys.org
Hi Peter,

Since $f$ is increasing we know $x_{1}<x_{2}\,\Longrightarrow\, f(x_{1})\leq f(x_{2}).$ This means that $f(t)$ is an upper bound for the set $\{f(s)\,\vert\, s < t\}$ and a lower bound for $\{f(s)\,\vert\, t<s\}$. Does that help resolve the issue?
 
GJA said:
Hi Peter,

Since $f$ is increasing we know $x_{1}<x_{2}\,\Longrightarrow\, f(x_{1})\leq f(x_{2}).$ This means that $f(t)$ is an upper bound for the set $\{f(s)\,\vert\, s < t\}$ and a lower bound for $\{f(s)\,\vert\, t<s\}$. Does that help resolve the issue?
Thanks so so much for the help GJA ...

Reflecting on what you have said ...

Beginning to suspect that I'm overthinking this issue ...

Thanks again for the help ...

Peter
 
Hi Peter,

Always happy to help in any way that I can. I had a tough time too when it came to understanding supremums and infimums. The words "least upper" and "greatest lower" don't hit the ear right initially.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
2
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K