MHB Indefinite integration involving exponential and rational function

juantheron
Messages
243
Reaction score
1
Calculation of $\displaystyle \int e^x \cdot \frac{x^3-x+2}{(x^2+1)^2}dx$
 
Mathematics news on Phys.org
Let $$y = \mathrm{e}^x \cdot \frac{x^3 - x + 2}{(x^2 + 1)^2} = f'$$ for some function $$f$$.

If we then write $$f = \mathrm{e}^x q$$ for some function $$q$$ and differentiate this we see that $$f' = \mathrm{e}^x (q + q')$$. Thus we can write

$$\mathrm{e}^x \cdot \frac{x^3 - x + 2}{(x^2 + 1)^2} = \mathrm{e}^x (q + q') \quad \Leftrightarrow \quad \frac{x^3 - x + 2}{(x^2 + 1)^2} = q + q'$$.

This could be solved directly, but I liked more to do this light differently like this:

Now I assume that function $$q$$ can be written in form $$q = \frac{p}{x^2 + 1}$$ using some function $$p$$. Substituting this into the equation gives us

$$(x - 1)^2p + (x^2 + 1)p' = x^3 - x + 2$$.

This ODE is easy to solve. For homogenous equation we obtain

$$p_h = C\mathrm{e}^{-x}(x^2 + 1)$$

and particular solution

$$p_p = x + 1$$,

and thus the solution to the ODE is

$$p = x + 1 + C\mathrm{e}^{-x}(x^2 + 1)$$.

Now we can write the functions $$q$$ and $$f$$, namely

$$q = \frac{p}{x^2 + 1} = \frac{x + 1}{x^2 + 1} + C\mathrm{e}^{-x}$$

and

$$f = \mathrm{e}^x q = \mathrm{e}^x \cdot \frac{x + 1}{x^2 + 1} + C$$.

Hence

$$\int \mathrm{e}^x \cdot \frac{x^3 - x + 2}{(x^2 + 1)^2} \mathrm{d}x = \mathrm{e}^x \cdot \frac{x + 1}{x^2 + 1} + C$$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top