(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I'm currently reviewing some of the old E&M material that I haven't seen in a while and have gotten stuck on this problem. I'm sure I'm just making a simple mistake but I can't seem to make any headway.

Here's the problem: Figure 35-32 shows a copper rod moving with velocity v parallel to a long straight wire carrying a current i. Calculate the induced emf in the rod, assuming v = 5.0m/s, i = 100A, a = 1cm and b = 20cm. Answer: 3.0X10^{-4}V

3. The attempt at a solution

The magnetic field of the wire a distance y away is [tex]B = \frac{\mu _{0}i}{2\pi y}[/tex]. Thus the total magnetic field across the length of the rod is [tex]B = \frac{\mu_{0}i}{2\pi}\int_{a}^{b}\frac{dy}{y} = \frac{\mu_{0}i}{2\pi}ln\frac{b}{a}[/tex]. Now the induced emf is [tex]\varepsilon = -\frac{d\Phi _{B}}{dt}=-B\frac{dA}{dt}=-B(b-a)\frac{dx}{dt}=-B(b-a)v[/tex]. Then the total equation is [tex]\varepsilon = \frac{-\mu_{0}iv}{2\pi}(b-a)ln\frac{b}{a}[/tex], the only problem being that this is apparently not the correct answer.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Induced EMF on a moving rod next to a line of current.

**Physics Forums | Science Articles, Homework Help, Discussion**