Induction with binomial coefficient

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary

Homework Help Overview

The discussion revolves around proving the identity involving binomial coefficients and alternating sums: ##\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}=\frac{1}{n+1}## for natural numbers ##n##. Participants explore various approaches, including mathematical induction and direct proofs.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss attempts at mathematical induction, with one original poster expressing difficulty in simplifying a specific term. Others suggest exploring direct proofs and integrating functions related to the identity.
  • Some participants question the validity of using equality signs in proofs that are not yet established, while others provide alternative perspectives on the problem.
  • There are discussions about changing index variables in summations and the implications of such changes on the boundaries of sums.

Discussion Status

The discussion is ongoing, with several participants providing insights and suggestions. Some have attempted to rewrite their proofs for clarity, while others are still grappling with specific terms and simplifications. There is no explicit consensus, but various productive directions have been explored.

Contextual Notes

Participants note the importance of careful handling of summation indices and the need for clarity in proof writing. There is also mention of a generalization of the original problem, which adds complexity to the discussion.

Lambda96
Messages
233
Reaction score
77
Homework Statement
##\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}=\frac{1}{n+1}##
Relevant Equations
none
Hi,

I'm having problems with the proof for the induction of the following problem: ##\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}=\frac{1}{n+1}## with ##n \in \mathbb{N}##

I proceeded as follows:

$$\sum\limits_{k=0}^{n+1} \frac{(-1)^k}{k+1} \binom{n+1}{k}=\frac{1}{n+2}$$
$$\sum\limits_{k=0}^{n+1} \frac{(-1)^k}{k+1} \biggl(\binom{n}{k} +\binom{n}{k-1} )=\frac{1}{n+2}$$
$$\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k} +\sum\limits_{k=0}^{n+1} \frac{(-1)^k}{k+1}\binom{n}{k-1} =\frac{1}{n+2}$$
$$ \frac{1}{n+1} + \sum\limits_{k=0}^{n+1} \frac{(-1)^k}{k+1} \binom{n}{k-1}=\frac{1}{n+2}$$

Unfortunately, I can't get any further now because I don't know how to solve the term ##\sum\limits_{k=0}^{n+1} \frac{(-1)^k}{k+1} \binom{n}{k-1}## and how to simplify it further. According to mathematica, the term would be ##-\frac{1}{n^2+3n+2}## and if I calculate ##\frac{1}{n+1}-\frac{1}{n^2+3n+2}=\frac{1}{n+2}##, I get the required result.
 
Physics news on Phys.org
What about a direct proof? I'm on my phone, so these expressions are hard to post!
 
  • Like
Likes   Reactions: Lambda96
Start with this

Lambda96 said:
##\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}##
Take out a factor of ##\frac1 {n+1}## and then the resulting sum must be ##1##, which I think is easy to prove.

You can then use this to get the other identity above that you needed for induction!
 
  • Like
Likes   Reactions: Lambda96
A general note. You shouldn't use the equality sign if you still have to prove equality! So your proofwriting should be
\begin{align*}
\sum_{k=0}^{n+1}\dfrac{(-1)^k}{k+1}\binom{n+1}{k} &=1+\dfrac{(-1)^{n+1}}{n+2}+\sum_{k=1}^{n}\dfrac{(-1)^k}{k+1}\binom{n+1}{k}\\
&=1+\dfrac{(-1)^{n+1}}{n+2}+\sum_{k=1}^{n}\dfrac{(-1)^k}{k+1}\left[\binom{n}{k}+\binom{n}{k-1}\right]\\
&=1+\sum_{k=1}^{n}\dfrac{(-1)^k}{k+1}\binom{n}{k}-\dfrac{(-1)^{n}}{n+2}+\sum_{k=1}^{n}\dfrac{(-1)^k}{k+1}\binom{n}{k-1}\\
&=\sum_{k=0}^{n}\dfrac{(-1)^k}{k+1}\binom{n}{k}-\dfrac{(-1)^{n}}{n+2}-\sum_{j=0}^{n-1}\dfrac{(-1)^j}{j+2}\binom{n}{j}\\
&=\dfrac{1}{n+1}-\dfrac{(-1)^{n}}{n+2}-\sum_{j=0}^{n-1}\dfrac{(-1)^j}{j+2}\binom{n}{j}\\
&=\dfrac{1}{n+1}-\sum_{j=0}^{n}\dfrac{(-1)^j}{j+2}\binom{n}{j}\\
&=\ldots\\
&\phantom{=}\vdots\\
&=\dfrac{1}{n+2}
\end{align*}
where ##1/(n+2)## only occurs when you actually arrived there.

I only wrote with a grain of salt what you already had, so it'll be no help. I got stuck in the same position.
A direct proof as @PeroK has suggested is definitely worth a try.
 
Last edited:
  • Informative
  • Like
Likes   Reactions: Lambda96 and berkeman
Integrate from 0 to 1 the identity

##(1-x)^n=\sum\limits_{k=0}^{n} \binom{n}{k} (-1)^kx^k##
 
  • Like
Likes   Reactions: Lambda96 and PeroK
Thank you PeroK, fresh_42 and martinbn for your help.

I wanted to use the tip from PeroK, with the factoring out of ##\frac{1}{n+1}## and got the following:

$$\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+1} \binom{n}{k}=\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+1} \frac{k+1}{n+1} \binom{n+1}{k+1}$$
$$\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+1} \binom{n}{k} = \frac{1}{n+1} \sum\limits_{k=0}^{n}(-1)^k \binom{n+1}{k+1}$$

Unfortunately, I now have problems showing that the term ##\sum\limits_{k=0}^{n}(-1)^k \binom{n+1}{k+1}## is equal to 1.

@martinbn Did you mean the following ##\int_{0}^{1} (1-x)^n \,dx##?
 
\begin{align*}
0&=(1-1)^{n+1}=\sum_{j=0}^{n+1} \binom{n+1}{j}1^{n+1-j}(-1)^j\\
&=1+\sum_{j=1}^{n+1} \binom{n+1}{j}1^{n+1-j}(-1)^j=1+\sum_{k=0}^n \binom{n+1}{k+1}(-1)^{k+1}
\end{align*}

That is what I wanted to show you in my first reply.
  • Changing the index variable by substitutions of the kind ##k \leftrightarrows j\pm 1## is often necessary when dealing with such sums.
  • The boundaries at the bottom and at the top of sums often require a specific treatment if we substitute the index since they are trivially right or wrong, or carry negative indices after the substitution which we do not want.
 
  • Like
Likes   Reactions: Lambda96 and PeroK
Lambda96 said:
Unfortunately, I now have problems showing that the term ##\sum\limits_{k=0}^{n}(-1)^k \binom{n+1}{k+1}## is equal to 1.
i thought you'd see that is closely related to ##(1 -1)^{n+1}##
 
  • Like
Likes   Reactions: Lambda96
Lambda96 said:
@martinbn Did you mean the following ##\int_{0}^{1} (1-x)^n \,dx##?
Let's put it the other way around: what do you get if you integrate the equation?
 
  • Like
Likes   Reactions: Lambda96
  • #10
Interesting. Maybe it would help to find the general form for ##\frac{1}{k}-\frac{1}{k+1}##, for context.

Edit ## n^2+3n+2=(n+1)(n+2)##
 
  • Like
Likes   Reactions: Lambda96
  • #11
Lambda96 said:
Homework Statement: ##\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}=\frac{1}{n+1}##
Here's a generalisation that you may want to try to prove. For ##m \ge 1##:
$$\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+m}\binom n k = \frac{(m -1)!}{(n+1)\dots(n+m)}$$Your identity is the case for ##m =1## and the next one is:
$$\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+2}\binom n k = \frac 1 {(n+1)(n+2)}$$
 
  • Like
Likes   Reactions: Lambda96 and fresh_42
  • #12
Thank you PeroK, fresh_42 and WWGD for your help. I have now tried the direct proof with the identity that martinbn suggested.I have now proceeded as follows:

$$=\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+1} \binom{n}{k} x^{k+1}$$Then I formed the derivative with respect to x

$$=\sum\limits_{k=0}^{n} (-1)^k \binom{n}{k}x^k$$
$$=\sum\limits_{k=0}^{n} (-x)^k \binom{n}{k}$$
$$=\sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k}$$

Then I can use the binomial theorem, so the sum is ##(1-x)^n##

I then get the following equation ##(1-x)^n=\sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k}## which I integrate from 0 to 1:

$$\int\limits_{0}^{1} (1-x)^n \ dx=\int\limits_{0}^{1} \sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k} \ dx$$
$$\frac{1}{n+1}=\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} 1^{n-k} \binom{n}{k}$$
$$\frac{1}{n+1}=\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}$$

Would that work as a proof?
 
  • #13
Lambda96 said:
Thank you PeroK, fresh_42 and WWGD for your help. I have now tried the direct proof with the identity that martinbn suggested.I have now proceeded as follows:

$$=\sum\limits_{k=0}^{n}\frac{(-1)^k}{k+1} \binom{n}{k} x^{k+1}$$Then I formed the derivative with respect to x

$$=\sum\limits_{k=0}^{n} (-1)^k \binom{n}{k}x^k$$
$$=\sum\limits_{k=0}^{n} (-x)^k \binom{n}{k}$$
$$=\sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k}$$

Then I can use the binomial theorem, so the sum is ##(1-x)^n##

I then get the following equation ##(1-x)^n=\sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k}## which I integrate from 0 to 1:

$$\int\limits_{0}^{1} (1-x)^n \ dx=\int\limits_{0}^{1} \sum\limits_{k=0}^{n} (-x)^k 1^{n-k} \binom{n}{k} \ dx$$
$$\frac{1}{n+1}=\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} 1^{n-k} \binom{n}{k}$$
$$\frac{1}{n+1}=\sum\limits_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}$$

Would that work as a proof?
It's not wrong, but I'd say it's a bit ragged. You labour some points, like keeping the term ##1^{n-k}##, but skip any details of the integration entirely. The idea is simply$$(1 - x)^n = \sum\limits_{k=0}^{n} 1^{n-k}(-x)^k \binom{n}{k} = \sum\limits_{k=0}^{n} (-1)^k x^k \binom{n}{k} $$Hence:$$\int_0^1 (1 - x)^n dx = \int_0^1 \sum\limits_{k=0}^{n} (-1)^k x^k \binom{n}{k} dx = \sum\limits_{k=0}^{n} (-1)^k \binom{n}{k} \int_0^1 x^k dx$$Then do the integration.
 
  • Like
Likes   Reactions: Lambda96
  • #14
Thanks PeroK for looking over my calculation and thanks for the tip 👍👍, I have now written out my proof in more detail.
 
  • Like
Likes   Reactions: WWGD
  • #15
Lambda96 said:
Thanks PeroK for looking over my calculation and thanks for the tip 👍👍, I have now written out my proof in more detail.
By the way, the induction you tried unsuccessfully in your OP works quite well to prove the general result! Once you have proved the case for ##m = 1##, you can do an induction on ##m##. See post #11.
 
  • Like
Likes   Reactions: Lambda96
  • #16
I will try the proof via induction again, especially for the exam preparation :book:
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
12
Views
2K
  • · Replies 22 ·
Replies
22
Views
1K